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a b s t r a c t

Crowd counting targets for determining the number of pedestrians in an image, which is of crucial
importance for smart city construction. The problem of scale variation is an ingrained and drastic
challenge in crowd counting, and it severely degrades the performance of counting. To address
this problem, many powerful models with complex network structures and tricks are built, but the
constrained resources of embedded systems prevent the direct deployment of these models into an
edge device. Thus, it is on high demand to design favourable lightweight models that require fewer pa-
rameters and a fast inference speed, while maintaining competitive counting performance. To this aim,
we devise a lightweight network, termed as Ghost Attention Pyramid Network (GAPNet). Specifically,
a lightweight GhostNet is adopted as the backbone to encode low-level features. Subsequently, a zero-
parameter channel attention module is designed to select the discriminative crowd region efficiently.
In addition, an efficient pyramid fusion module is built with a four-branch architecture to obtain
multiscale hierarchy representations while reducing the parameters. Finally, a decoder generates the
prediction by exploiting a series of transposed convolution blocks. Extensive experiments on crowd
counting benchmarks have proved the superiority of the GAPNet in both accuracy and efficiency.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the impact of urbanization has put huge pres-
ure on city management and planning. The emergence of In-
ernet of Things devices and miniaturized sensing technologies
ave promoted the progress of smart cities. Specifically, crowd
nalysis plays a crucial role in many smart city applications, e.g.,
rowd tracking [1], crowd counting [2], and drone-based crowd
nalysis [3]. Among the applications in crowd analysis, crowd
ounting is a fundamental and practical task that targets for
nferring the number of pedestrians in a still image or video
equence. The crowd counting task can be applied to a lot of real-
orld scenarios, such as large gatherings, urban planning and
edestrian monitoring [2,4].
Crowd counting algorithms can be divided into three cat-

gories: detection-based [5], regression-based [6] and density
stimation-based methods [7–9]. Specifically, the density estim-
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ation-based method relies on the powerful feature extraction
ability of convolutional neural network (CNN) to regress a density
map, and then sum the pixels on the density map to get the
counts. It is far more accurate and stable than the other two
methods and has become the mainstream counting approach.

Nevertheless, most of current methods always adopt bulky
networks as the backbone, e.g., VGG and ResNet, to extract fea-
tures or design complex modules to refine features. No gainsay-
ing, the counting results with dense networks are excellent, but
the results are achieved at the cost of large resource consumption,
e.g., computational time and GPU memory.

Fig. 1 shows the comparison of parameters and counting ac-
curacy of some competitive models on Shanghai Part A dataset
(MCNN [10], TDF-CNN [11], SANet [12], CAN [13], BL [14], SAS-
Net [15], UEPNet [16] and ours). It proves that superior counting
performance is often accompanied by an increase in parameters.
For example, the SASNet outperforms the proposed method in
MAE. Because the SASNet is a network with huge parameters. The
parameter in SASNet is 38.9M, which is 13.75 times the parame-
ters of GAPNet (2.85M). However, a large number of parameters
will undoubtedly lead to a decrease in counting efficiency, which
limits the deployment of the model in real scenarios. Therefore, it
is a challenging and profound task to solve the problem of scale
variation under the premise of the lightweight network scheme.

https://doi.org/10.1016/j.future.2023.05.013
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.05.013&domain=pdf
mailto:mlgao@sdut.edu.cn
mailto:ggjeon@gmail.com
https://doi.org/10.1016/j.future.2023.05.013
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Fig. 1. Comparison of the parameters and accuracy of different models on
hanghai Part A dataset. Low MAE indicates high counting accuracy.

To this aim, several lightweight networks [17–19] have been
ntroduced to boost the counting efficiency. Liu et al. [18] pro-
osed a knowledge transfer mechanism to train an efficient
‘student’’ network through a well-trained ‘‘teacher’’ network.
ao et al. [19] adopted some compact convolution blocks to
ackle the appearance similarity and attained competitive count-
ng performance. Despite the efficiency gains, there are still some
efects. The first and most important point is the unconvincing
ounting performance. The purpose of crowd counting is to count
he number of people as precisely as possible, but poor counting
esults against this aim. Because the most direct way to reduce
he number of parameters is to remove numerous convolution
ayers, the extraction of features with only a few convolutional
ilters is yet insufficient. Zhang et al. [10] adopted three branch
onvolution layers to predict the counts and there are few pa-
ameters, but it lacks accuracy. SANet [12] was built with a
eries of convolution filters for efficient crowd counting, but the
ounting results are also unsatisfactory as it fails to extract low-
evel features. Wang et al. [17] employed a lightweight network
obileNet as encoder, and designed simple fusion blocks to ob-

ain multiscale information. Despite the support of the backbone
etwork, the counting accuracy is not ideal.
Another point is that extracting multiple hierarchy informa-

ion has always been a challenge in the field of crowd counting,
specially in lightweight networks. Restricted convolution layers
annot meet the demand of encoding low-level features and
ich spatial semantic information. To cope with the problem,
ultiscale feature fusion is an effective way, which mainly built
pyramid structure to extract features with different scales.

ASNet [15] designed a density head and confidence head branch
o adaptively select the crowd region with different density levels.
TNet [20] proposed a scale tree network to extract hierarchical
eatures, which was capable of boosting the scale diversity of den-
ity map. Furthermore, some works [21,22] introduced attention
odules to select the crowd region with different density levels.
uo et al. [22] proposed a dilated attention module to generate
ifferent interest maps, which consist of rich scale information.
Despite the protracted efforts, the problem of scale variation is

till the most difficult problem to solve in a crowd scenario, espe-
ially in a dense crowd scenario. Compared with the sparse crowd
cenarios, the scale variations in dense scenarios are more drastic
nd the CNN-based models proposed previously are difficult to
apture more scale-level features due to the limited receptive
ield. Certainly, the scale variations can be addressed by enlarging
he receptive field, but it will increase the complexity of the
odel. To this aim, the motivation of the paper is to solve the
roblem of scale variation under the premise of the lightweight

etwork scheme.
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In this work, we propose the Ghost Attention Pyramid Net-
work (GAPNet) to address the problem of scale variations in
crowd counting under the premise of the lightweight network
scheme. Specifically, we deploy the GhostNet [23] as the encoder
to extract low-level representations. Then, a zero-parameter
channel attention (ZCA) module and an efficient pyramid fu-
sion (EPF) module are proposed to handle the scale variation.
Finally, several transposed convolution layers are stacked as the
decoder to output the prediction. The ZCA module is effective
and efficient because it needs no parameters to be learned, only
through a series of simple operations, i.e., average pooling, linear
transforms and activation function, can adjust the weight of the
channels. Subsequently, the EPF module is built with a four-
branch pyramid structure to extract multiscale features. Each
branch is composed of group convolutions and dilated convolu-
tions, which is helpful to reduce the number of parameters. In
short, this paper makes the following contributions:

1. A lightweight network termed GAPNet is proposed for
crowd counting. It can be adapted to different scales and
accomplish counting tasks efficiently and accurately.

2. A ZCA module is built to select the crowd region. Mean-
while, an EPF module is proposed to capture multi-hierar-
chy information efficiently.

3. Extensive experiments are carried out to verify the perfor-
mance of crowd counting in accuracy and efficiency. Mean-
while, detailed ablation studies are conducted to prove
the effectiveness of the individual module in the proposed
model.

The following sections are structured as follows. Section 2
reviews the works related to the proposed method. Section 3
introduces the proposed method in detail, and Section 4 makes
experimental comparison and analysis. Finally, the paper is sum-
marized in Section 5.

2. Related work

In this section, we revisit three types of network related
to the proposed method, i.e., multiscale fusion-based network,
attention-based network and lightweight-based network.

2.1. Multiscale fusion-based network

The scale variation is an inherent and chronic challenge in the
field of crowd counting. It has been hindering the enhancement
of the counting accuracy. An effective way to solve the problem
is multiscale information fusion [10,24].

Zhang et al. [10] constructed a multi-column network, using
three different branches to obtain features with different scales.
The output of each branch is concatenated to generate a high-
quality density map. In order to fit the crowd density in crowded
scenes, Liu et al. [25] utilized different dilated convolutional lay-
ers in the back-end, to deal with the scale variation. Similarly,
Liu et al. [13] proposed a context-aware network (CAN) to encode
the scale representations adaptively. Particularly, it adopts scale
pyramid pooling to increase the scale diversity, then a geometry-
guided context learning mechanism is introduced to adapt to the
foreground context. Jiang et al. [24] built an attention scaling
network to produce the scaling factors, which are employed to
multiply with the density map to adjust to the diverse crowd
region densities. The final crowd density map can be generated
by summing each fine-grained feature maps. Song et al. [15]
adopted the U-Net as backbone to obtain five representations
with different sizes. Then, a density head branch and a confi-
dence head branch are built to select the crowd region adap-
tively. Wang et al. [20] proposed a scale tree diversity enhancer
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o amplify scale representations hierarchically. Then, a cross-
cale communication is introduced to strengthen the correlation
etween adjacent scales.
However, multiscale information fusion requires constructing

multi-column architecture, which will result in structural bloat
nd numerous parameters consuming [2]. For this purpose, we
esign an EPF module to capture scale information, which is both
ffective and efficient.

.2. Attention-based network

The attention mechanism can guide the model to focus on
he foreground by adjusting the channel or spatial weights adap-
ively. Recently, a number of attention modules have been suc-
essfully applied to crowd counting with incredible results.
uo et al. [22] proposed a scale-aware attention fusion module to
enerate attention maps which concentrate on the discriminative
rowd scenes. Sindagi et al. [26] designed a spatial attention
odule to recognize the foreground, which can be exploited to
oost the feature response. Guo et al. [21] proposed an attention
odule in the frequency domain, which can get more frequency

nformation to select the foreground. Furthermore, a spatial at-
ention is introduced to stress the heads with different scales.
hen et al. [27] built a variational attention and an intrinsic
ariational attention to guide the network to handle the specific
omains. Wang et al. [28] incorporated an attention layer in the
ack-end to produce a segmentation density map. The segmen-
ation map can save useful context information and guarantee
ccurate crowd region.
Undoubtedly, the foregoing methods can achieve the excellent

ounting performance, but the attention modules always come
ith some parameters to be learned. To this end, we propose
zero-parameter attention module to adjust the weight of the
hannel without parameter growth.

.3. Lightweight-based network

In order to meet the requirements of practical engineering, the
ightweight counting model has been explored by many schol-
rs [11,17,19]. These models are expected to apply fewer param-
ters to get a satisfactory counting result.
The MCNN [10] is not only the first proposed network to

ncrease scale diversity, but also a lightweight model. It only
dopts several simple convolution filters to extract the context
nformation. Cao et al. [29] utilized four convolution blocks as
ncoders to extract features, in which each convolution block
s composed of four parallel convolution layers with different
ernel sizes. Wang et al. [17] built a lightweight network which
dopts MobilenetV2 [30] as the backbone to encode the scale
epresentations, then several chained residual blocks and fu-
ion blocks are applied as decoder to predict the density map.
he encoder–decoder MobileCount can attain a balance between
ounting precision and efficiency. Gao et al. [19] discarded the
rocess of extracting basic network from backbone, and directly
esigned a lightweight perspective crowd counting network. It
onsists of a density map estimation for local feature recogni-
ion, a random high-level density classification for global feature
xtraction, and a fore/background segmentation for identifying
he crowd region. Sam et al. [11] proposed a top-down feedback
etwork to refine the initial prediction. It is composed of two
fficient modules, i.e., bottom-up and top-down modules. The
ottom-up module built two columns of CNNs, each consisting
f convolutional layers with different receptive fields (9 × 9,
× 7, 5 × 5 and 3 × 3). The top-down module leverages the

imilar structure to generate the final density map. Ma et al. [31]

uilt a hierarchical network called lightweight count network to
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Table 1
Architecture of the decoder in GAPNet.
Layers Kernel size Output channels Activation function

Layer1 4 × 4 80 ReLU
Layer2 4 × 4 40 ReLU
Layer3 4 × 4 24 ReLU
Layer4 4 × 4 16 ReLU
Layer5 4 × 4 1 ReLU

address the crowd distribution prediction in congested scenes.
Liu et al. [18] designed a Structure Knowledge Transfer (SKT)
network to replace the dense backbone. Shi et al. [32] built a
compact CNN with three parallel convolution filters for real-time
crowd counting.

In this paper, we propose a lightweight network based on
GhostNet for crowd counting, which ensures the counting per-
formance and a few parameters.

3. Methodology

The architecture of the proposed GAPNet is illustrated in Fig. 2.
It consists of four parts, an encoder for basic feature extraction,
a ZCA module for selecting the crowd region, an EPF module
for multiscale feature fusion, and a decoder for the density map
prediction. Specifically, the encoder adopts the GhostNet [23]
as the backbone, in which discards the final pooling and linear
layer. Moreover, the decoder is composed of several transposed
convolution blocks to resize the density map to the same size as
the input (see Table 1).

3.1. Ghostnet

Lightweight networks require few convolutional filters and
small convolution kernel sizes. To this end, we adopt the Ghost-
Net [23] as the backbone to encode basic representations, which
is able to discard plenty of redundant feature maps. Specifically,
it is a stack of several Ghost bottleneck blocks which termed as
Ghost module, as shown in Fig. 3.

Given the input I ∈ RC×H×W , a set of 1 × 1 convolution
filters are first utilized to reduce the input channels by a half and
produce the squeezed features X ∈ R

C
2 ×H×W . Next, a cheap lin-

ear (CL) operation [23] is adopted to each channel of X to obtain
ghost features Y ∈ R

C
2 ×H×W . Specifically, the CL operation can be

viewed as a group convolution. The number of groups is equal
to the number of input channels. Note that the parameters of CL
operation is much less than that of convolution operation, and
the ghost features generated by linear operations can well replace
redundant features generated by convolution filters. Finally, the
output O ∈ RC×H×W can be generated by a concatenation with X
and Y . In a nutshell, the ghost module can be defined as,

O = Cat(Conv1(I), CL(Conv1(I))), (1)

where Cat and CL denote the concatenation and cheap linear op-
erations, respectively. Afterwards, two ghost modules are adopted
to form the ghost bottleneck block, shown in Fig. 4. It is divided
into two types according to the different strides. The bottleneck
block with the stride of 2 can reduce the feature spatial dimension
by half to capture the semantic information of relative details.
Eventually, the GhostNet can be constructed by stacking ghost

bottleneck blocks according to the structure of MobileNet [30].
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Fig. 2. Architecture of the proposed GAPNet. It consists of an encoder, a ZCA module, an EPF module and a decoder. The encoder is composed of stacked ghost
blocks, and the decoder consists of a batch of transposed convolution blocks.
Fig. 3. Architecture of the Ghost module. First, convolution layers with a kernel size of 1 × 1 are employed for channel reduction. Then, a cheap linear operation
s utilized to generate ghost feature maps. Last, a concatenation operation is executed to generate the output.
Fig. 4. Architecture of the ghost bottleneck block. ‘BN’ and ‘ReLU’ denote the
batch normalization and ReLU activation function, respectively. ‘DwConv’ and
‘Add’ are the depth-wise convolution and addition operations.

3.2. Zero-parameter channel attention module

The objective of channel attention in crowd counting is to
ocus on the region where exists people from the feature map.
inear transform is able to increase the importance of target
hannels [33]. Specifically, it evaluates the linear separability
etween the target channels and other channels based on the
nergy function as,

=
4(σ 2

+ λ)
(fc − µ)2 + 2σ 2 + 2λ

, (2)

where µ and σ 2 denote the mean value and variance of the
feature fc , respectively. λ is a constant to prevent the σ from being
0, and it is set to 0.0001 in this paper. Eq. (2) states that the value
331
of the energy function is determined by the linear transformation
of the mean and variance of the spatial features of each channel.
The lower the value of E, the more distinguishable the channel
is from the surrounding channels, and the higher the weight
should be given. In other words, the reciprocal of the Eq. (2) is
proportional to the importance of the channel.

Based on the above discussion, we introduce the ZCA module
to boost the counting performance without parameter growth.
The architecture of the ZCA module is shown in Fig. 5.

Given an input I, a global average pooling operation is first
executed to reduce the size of I to 1 × 1, which is able to get
a set of global attention maps X . Based on the energy function,
the new channel attention maps Y are subsequently generated
by performing a series of element-wise operations on X . It is
computed as follows,

Y =

C∑
i=1

(Xi − µ)2 + 2(σ 2
+ λ)

4(σ 2 + λ)
, (3)

where Xi represents the ith channel attention map. Following
that, the re-adjust attention map Y is obtained by a Sigmoid
function. Finally, I is multiplied by the Y to produce the output O.
In a nutshell, the function of the ZCA module can be formulated
as,

O = I × {Sig ⟨fe (GAP(I))⟩} , (4)

where GAP and fe are the global average pooling and linear trans-
form operations, respectively. The ZCA module has no parameters
to be trained, and the optimized channel feature map can be
obtained only through some mathematical operations, which can
effectively emphasize crowd areas.

3.3. Efficient pyramid fusion module

After the crowd area is selected by the ZCA module, the sub-
sequent essential issue is to get rich spatial information to adapt
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Fig. 5. Architecture of the proposed ZCA module. First, a global average pooling operation squeezes the spatial size of the input to 1 × 1. Then, a series of linear
perations differentiate the importance of channels. Last, the input is multiplied by the weight to generate the optimized feature maps.
Table 2
Detailed information of the crowd counting datasets.
Dataset Images Avg.resolution Train/Val/Test Avg.count Total.count Annotation format

ShanghaiTech Part A [10] 482 589 × 868 300/ -/ 182 501 241,677 point-level
ShanghaiTech Part B [10] 716 768 × 1024 400/ -/ 316 123 88,488 point-level
UCF_CC_50 [34] 50 2101 × 2888 50/ 10/ 50 1,279 63,974 point-level
UCF-QNRF [35] 1,535 2013 × 2902 1,201/ -/ 334 815 1,251,642 point-level
WorldExpo’10 [36] 3,980 576 × 720 3,380/ -/ 600 50 199,923 point-level
NWPU-Crowd [37] 5,109 2191 × 3209 3,109/ 500/ 1,500 418 2,133,375 point&box-level
CARPK [38] 1,448 720 × 1280 989/ -/ 459 62 89,777 box-level
g
a
t
f

M

w
t
I

to the scale variation of the heads. To this end, an effective way is
to construct a pyramid structure, and exploit receptive fields with
different scales to extract spatial representations. However, most
of the pyramid structures [13,20] generally adopt multi-branch
structure, each branch adopting convolution filters of different
sizes to learn spatial features. The structure is redundant and is
not suitable for application in a lightweight network.

In order to solve the scale variation efficiently, we propose the
PF module, as shown in Fig. 6. It is a four-branch pyramid struc-
ure, and each branch extracts the features with different scales
ndependently. At the back end of the module, a concatenation
peration is executed to obtain rich spatial information. Com-
ared with the aforementioned pyramid structures, the improve-
ents of the EPF modules are two-folds. First, the traditional
onvolution is replaced by the group convolution. Group convo-
ution divides the convolution filters into different groups, which
re responsible for input at a particular depth, which ensures
fficient training, simplification of the model and prevention of
verfitting [23,30]. Second, dilated convolutions with fixed kernel
ize (3 × 3) instead of larger filters (e.g.,5 × 5, 7 × 7) are used
to obtain rich spatial information. Dilated convolution has been
widely applied to increase the scale diversity of the network
without parameter increasing. The generated feature Fi of each
ranch is represented as,

i = Conv3×3(di,Gi)(I), i = 0, 1, 2, 3 (5)

here di and Gi denote the dilated rates and groups of each
ranch, respectively. Among them, di = [1, 3, 5, 7] and Gi =

1, 4, 8, 10]. Finally, the output can be produced by concatenating
hem, which is defined as,

= Cat(F0, F1, F2, F3) (6)

here Cat means a concatenation operation. With the aid of
roup convolutions and dilated convolutions, the multiscale rep-
esentations can be obtained efficiently.

.4. Ground truth generation

Similar to the most previous crowd counting methods [8,10,
9], we employ the Gaussian kernel G blur dot annotations to
σ p
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enerate the ground truth map. Assuming a head annotation is
t pixel xi, it can be represented as δ(x − xi). Then the ground
ruth map is obtained by convolving δ(x− xi). The process can be
ormulated as,

gt =

H∑
i=1

δ(x − xi) ∗ Gσ , (7)

where H denotes the number of labelled heads in an image, and
∗ represents a convolution operation. σ is Gaussian kernel size,
and it is set to a constant of 15 in all experiments.

3.5. Loss function

We adopt the Euclidean loss to evaluate the difference be-
tween the prediction and target map at a pixel level. It is for-
mulated as,

Lcount =
1
T

T∑
t=1

Xest (It , θ ) − Xgt (It )
2
2 , (8)

here Xest (It , θ ) and Xgt (It ) denote the estimated and ground
ruth map, respectively. T is the total pixels in the density map.
k and θ represent the kth input and a set of parameters to be
trained.

4. Experiments

4.1. Datasets

Five benchmark crowd counting datasets are utilized to con-
duct the experiments. The specific details of the datasets are
listed in Table 2.

ShanghaiTech. The ShanghaiTech dataset [10] consists of two
parts, i.e., Part A and Part B. Part A is randomly downloaded from
the website and has a higher crowd density than Part B, whereas
Part B is taken from the real-scene streets and has more obvious
non-uniform distribution and scale variation than Part A.

UCF_CC_50. The UCF_CC_50 dataset [34] has extremely high
edestrian density and the limited sample size. The two serious
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Fig. 6. Architecture of the proposed EPF module. First, it divides the input into four groups. Then, convolution layers with different dilated rates are adopted to
btain features with different scales. Last, a concatenation operation is utilized to generate the output.
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roubles make most of the current methods perform poorly on
he dataset. Due to the small number of images, 5-fold cross-
alidation is performed to train and test the proposed model.
UCF-QNRF. The UCF-QNRF dataset [35] is one of the most

challenging crowd counting datasets because of the scene diver-
sity and large scale variation. The images are randomly collected
from the Internet, and the average resolution is higher than other
datasets.

WorldExpo’10. The WorldExpo’10 dataset [36] is captured
rom 2010 Shanghai World Expo and is composed of video se-
uences of five scenes. Furthermore, it gives the region of inter-
st (ROI) for each scene.
NWPU-Crowd. The NWPU-Crowd dataset [37] is the largest

rowd counting dataset in terms of sample size and resolution till
ow. It is taken from the self-shooting and Internet and is divided
nto five levels based on the scene density. In addition, it provides
oth point-level and bounding box level annotations.
CARPK [38] is specified for vehicle counting, and it is taken

rom four diverse parking lots in a drone-view.

.2. Implementation details

For data augmentation at the training stage, randomly cropped
ith a size of 576 × 768 and horizontally flipped are conducted
n all images. The batch size is set to 8 for all datasets. The
aximum number of epochs is set to 3,000. Adam algorithm [40]
ith a learning rate of 1e-4 and a decay rate of 0.995 is used
o optimize the model. All experiments are implemented by the
yTorch toolbox. An RTX 3090Ti NVIDIA GPU is employed to train
he model. Four different types of GPUs, i.e., RTX 3090Ti, RTX
3090, RTX 2080 super, and GTX 1080Ti, are utilized for model
efficiency test.

4.3. Evaluation protocols

Consistent with the previous methods [9,10], we utilize the
mean absolute error (MAE) and root mean square error (RMSE)
to evaluate the counting methods in accuracy and stability. They
are defined as,

MAE =
1
N

N∑
|Esti − Gti| , (9)
i=1
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RMSE =

√ 1
N

N∑
i=1

∥Esti − Gti∥2
2, (10)

here N represents the number of test samples, Esti and Gti are
he estimated counts and real counts of ith image, respectively.
ower MAE and RMSE indicate better counting accuracy and
tability of the model.
To evaluate the efficiency of the models, we adopt the in-

icator of FLOPs [17,19], inferring time and FPS (frames per
econd).

.4. Comparison and analysis

We compare the proposed GAPNet with other mainstream
ethods in counting performance and efficiency. The comparison

esults are shown in Table 3, Table 4 and Table 5, respectively.

.4.1. Crowd counting comparison
The comparison of counting results is reported in Table 3.
e divide all methods into two groups based on the number of
arameters (separated by horizontal line). Group 1 represents the
ense networks, whereas the Group 2 denotes the lightweight
etworks. Overall, the results of the first group are superior to
he second group because they have more complex models and
ore parameters.
On Part A, the GAPNet gets the first place in both MAE and

MSE, and has a big margin with other lightweight models.
pecifically, compared with the second-best method PCCNet [19],
he proposed model improves the MAE and RMSE by 8.7% and
1.0%, respectively. In addition, the GAPNet is also competitive
ompared with the first group. Compared with CSRNet [25],
hich also aims to deal with scale variation, the proposed method
educes MAE and RMSE by 1.6% and 4%, respectively. In addition
o the improved counting performance, the GAPNet reduces the
arameters by 5.7 times compared to CSRNet, indicating that
he proposed method is more suitable to be deployed to actual
cenes. On the relatively sparse Part B, the GAPNet also achieves
atisfactory results, with scores of 9.8 and 15.2 in MAE and RMSE.
On the UCF_CC_50 dataset, the counting performance of the

roposed GAPNet outperforms again all the other competitors in
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Table 3
Objective comparison results on the crowd benchmark datasets. For the first group, the best performance is marked in red, and the second-best performance is
marked in blue. For the second group, the best results are highlighted in bold, and the sub-best results are highlighted in underline.
Methods Part A Part B UCF_CC_50 UCF-QNRF WorldExpo’10 NWPU Params

(M)MAE RMSE MAE RMSE MAE RMSE MAE RMSE S1 S2 S3 S4 S5 Avg MAE RMSE

CAN [13] 62.3 100.0 7.8 12.2 212.2 243.7 107.0 183.0 2.9 12.0 10.0 7.9 4.3 7.4 106.3 386.5 18.10
BL [14] 61.5 103.2 7.5 12.6 229.3 308.2 87.7 158.1 – – – – – – 105.4 454.2 21.50
ASNet [24] 57.8 90.0 – – 174.8 251.6 91.6 159.7 2.2 10.1 8.9 7.1 4.8 6.6 – – 30.39
NoiseCC [41] 61.9 99.6 7.4 11.3 – – 85.8 150.6 1.6 8.8 10.8 10.4 2.5 6.8 96.9 534.2 20.02
LSC-CNN [42] 66.5 101.8 7.7 12.7 225.6 302.7 120.5 218.2 2.9 11.3 9.4 12.3 4.3 8.0 – – 42.23
SFCN [43] 64.8 107.5 7.6 13.0 214.2 318.2 102.0 171.4 1.8 17.5 11.1 13.5 3.0 9.4 105.7 424.1 38.60
UOT [44] 58.1 95.9 6.5 10.2 – – 83.3 142.3 – – – – – – 87.8 387.5 21.50
DKPNet [27] 55.6 91.0 6.6 10.9 – – 81.4 147.2 – – – – – – 74.5 327.4 30.63
GL [45] 61.3 95.4 7.3 11.1 – – 84.3 147.5 – – – – – – 79.3 346.1 21.51
CSRNet [25] 68.2 115.0 10.6 16.0 266.1 397.5 135.4 207.4 2.9 11.5 8.6 16.6 3.4 8.6 121.3 387.8 16.26
UEPNet [16] 54.6 91.2 6.4 10.9 165.2 275.9 81.1 131.7 1.6 9.8 10.3 8.6 4.1 6.9 – – 26.12
P2PNet [7] 52.7 85.1 6.3 9.9 172.7 256.1 85.3 154.5 – – – – – – 77.4 362.0 18.34
STNet [20] 52.9 83.6 6.3 10.3 162.0 230.4 87.9 166.4 – – – – – – – – 15.56

MCNN [10] 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0 3.4 20.6 12.9 13.0 8.1 11.6 232.5 714.6 0.13
PCCNet [19] 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 1.9 18.3 10.5 13.4 3.4 9.5 – – 0.55
SANet [29] 75.3 122.2 10.5 17.9 258.4 334.9 152.6 547.0 2.6 13.2 9.0 13.3 3.0 8.2 190.6 491.4 0.91
LCNet [31] 93.3 149.0 15.3 25.2 326.7 430.6 – – – – – – – – – – 0.86
CCNN [32] 88.1 141.7 14.9 22.1 – – – – 3.8 20.5 8.8 8.8 7.7 9.9 – – 0.073
1/4SAN+SKT [18] 78.0 126.6 11.9 19.8 – 157.5 257.7 3.4 16.1 15.8 15.4 4.9 11.1 – – 0.058
MobileCount [17] 89.4 146.0 9.0 15.4 284.8 392.8 131.1 222.6 – – – – – 11.1 – – 3.40
GAPNet (Ours) 67.1 110.4 9.8 15.2 202.8 246.9 118.5 217.2 1.5 11.5 8.0 7.0 2.5 6.1 174.1 514.7 2.85
Table 4
Comparison results of different models in inferring time and FPS on Shanghai Part A using different GPUs. (The input size is set to 576 × 768.).
Methods Params (M) FLOPs RTX 3090Ti RTX 3090 RTX 2080 super GTX 1080Ti

Time (ms) FPS Time (ms) FPS Time (ms) FPS Time (ms) FPS

MCNN [10] 0.13 11.9 4.8 210.7 4.2 235.5 8.6 116.0 9.3 107.1
CSRNet [25] 16.26 182.7 16.6 60.4 15.1 66.4 34.4 29.0 43.0 23.3
CAN [13] 18.10 193.7 18.9 52.8 18.3 54.6 35.6 25.3 49.8 20.1
BL [14] 21.50 182.2 16.3 61.3 15.7 63.4 30.1 33.2 31.6 31.7
SASNet [15] 38.90 393.2 43.1 23.2 45.3 22.1 90.2 11.1 100.6 9.9
GAPNet (Ours) 2.85 3.29 4.0 252.1 7.7 130.1 9.7 102.8 10.4 99.6
the second group, and it is quite comparable along the methods
in the first group. Compared with the SFCN [43], the GAPNet
improves the MAE and RMSE by 5.3% and 22.4%, respectively.
In fact, SFCN has 13.5 times more parameters than the GAP-
Net. This proves that the proposed method not only ensures
the lightweight of the model, but also guarantees the counting
accuracy.

On the UCF-QNRF dataset, the GAPNet scores 118.5 and 217.2
n MAE and RMSE, respectively, both outperforming the methods
n the second group. Compared with the second-best method
obileCount [17], it achieves an improvement by 9.6%, 2.4%,
nd 16.2% in terms of MAE, RMSE and parameter size. Addition-
lly, because UCF-QNRF is characterized by large scale variation,
he experimental results prove that GAPNet can cope with this
hallenge well.
On the WorldExpo’10 dataset, one can see that the proposed

ethods performs best in the scenes of 1, 3, 4, 5 and the average
core among both Group 1 and Group 2 in terms of MAE. The
nly special case is the scene 2 in which the winner is the
oiseCC [41]. However, the GAPNet improves the average MAE
alue by 10.3% compared with NoiseCC. Also, it can be seen that
he ASNet [24] performs best in MAE within Group 1. Compared
ith ASNet, the GAPNet has improvements of 7.6% in MAE and
0.6% in Params.
On the NWPU-Crowd dataset, it can be observed that the

APNet scores 174.1 and 514.7 in MAE and RMSE, respectively.
ompared with lightweight networks in Group 2, it performs the
est in MAE and ranks only second to SANet in RMSE. The reason
an be attributed that we only use MSE loss function for network
raining, but SANet employs MSE and local pattern consistent
oss to enhance the local correlation of density map. Still, it
as a large improvement room compared with the methods in
roup 1. Because the methods in Group 1 has larger number of
334
Table 5
Objective experimental results on the CARPK dataset.
Methods MAE RMSE Params(M)

LCDNet [46] 13.1 – 0.21
DroneNet [48] 9.0 – 0.6
LMSFFNet [47] 7.1 9.0 4.58
MoblieCount [17] 17.5 23.9 3.40
GAPNet (Ours) 8.9 13.7 2.85

parameters, which are beneficial to regress a high-quality density
map compared with the lightweight methods.

Some subjective results are illuminated in Fig. 7. ‘GT’ is the
ground truth. ‘Est’ represents the number of people predicted
by the network, which is obtained by summing the pixels on
the density map. It demonstrates that the estimated map counts
are closely approximate to the ground truth values. The training
curve is shown in Fig. 8.

4.4.2. Vehicle counting comparison
To explore the generalization of the proposed GAPNet, we

compared it with several lightweight models (LCDNet [46],
LMSFFNet [47], MoblieCount [17], DroneNet [48]) on CARPK
dataset. The comparison results are listed in Table 5. Among the
competitors, LCDNet [46], LMSFFNet [47], and DroneNet [48] are
specified for vehicle counting. One can see that the proposed
GAPNet is slightly inferior to the LMSFFNet, but it outperforms
the LCDNet and DroneNet in terms of accuracy. Specially, the
proposed GAPNet is superior to LMSFFNet in terms of Params.
Furthermore, compared with the MobileCount, it reduces the
MAE and RMSE by 49.1% and 42.7% respectively, and it has fewer
parameters.
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Fig. 7. Subjective Comparisons of different methods on the datasets. From top to bottom, it depicts the input, ground truth and estimated density maps of Shanghai
art A, Shanghai Part B, UCF_CC_50, UCF-QNRF, World Expo’10 and NWPU-Crowd datasets.
.4.3. Efficiency comparison
To test the efficiency of the proposed method, we conduct a

eries of comparative experiments on Shanghai Part A dataset
sing four different GPUs (RTX 3090Ti, RTX 3090, RTX 2080 super
nd GTX 1080 Ti). The input size is set to 576 × 768.
Three evaluation indicators, namely FLOPs, inferring time and

rame per second (FPS), are used to evaluate the efficiency of
335
different models. The comparative results are listed in Table 4.
It proves that the complex models, e.g., (CSRNet [25], CAN [13],
BL [14] and SASNet [15]) have higher FLOPs, longer reasoning
time and lower FPS, which indicates that the networks are ineffi-
cient and are difficult to be deployed in real-world applications. In
contrast, MCNN [10] has the most light model with a parameter of
0.13M but has the worst counting performance. Compared with



X. Guo, K. Song, M. Gao et al. Future Generation Computer Systems 147 (2023) 328–338

E
A
r
o

Fig. 8. The MAE curve during the training process on the Shanghai Part A
dataset.

MCNN, the GAPNet achieves better result in terms of inferring
time and FPS. On an RTX 3090Ti, the GAPNet gets the fastest in-
ferring speed and highest FPS with 4.0 and 252.1, outperforming
the other methods.

4.5. Ablation study

To explore the effectiveness of the proposed ZCA module and
PF module, we conduct a set of ablation studies on Shanghai Part
dataset. The results are reported in Table 6. The baseline rep-

esents the model only with encoder and decoder. The symbols
f ‘+’ and ‘∥’ denote the connection mode of series and parallel,

respectively.
336
One can observe that the baseline scores 72.8 and 120.8 in
MAE and RMSE. When the ZCA module is deployed into the
baseline, there are no growth of parameters and FLOPs, but the
MAE and RMSE improve by 3.0% and 7.7%, respectively. Moreover,
compared with the classical channel attention SE module [49], the
ZCA module can achieve the same counting performance. When
the EPF module is adopted in the baseline, the MAE and RMSE are
improved by 4.8% and 4.7% with only a 0.06M parameter increase.
As can be observed from the different connection modes between
the ZCA and EPF modules, the series mode performs better than
parallel mode in accuracy. In the two modes of series, the mode
of ‘Baseline+ZCA+EPF’ is better than ‘Baseline+EPF+ZCA’.

The visual results of different configurations on Shanghai Part
A dataset is depicted in Fig. 9. From top left to bottom right are
the original input, ground truth and the estimated density maps
by seven different configurations. One can observe that the mode
5, i.e., ‘Baseline+EPF∥ZCA’ has a poor performance in generating
the density map and the estimated counts are far away from
the ground truth. Compared with other configuration modes, the
estimated density map and the counts of the GAPNet are closet
to the ground truth.

5. Conclusion and future work

In this paper, we propose a lightweight GAPNet to solve the
scale variation in crowd counting. The GAPNet consists of an
encoder, a ZCA module, an EPF module and a decoder. Specifically,
the encoder can discard the redundant features while extracting
the basic feature representations. The ZCA module is capable to
select a crowd region while consuming zero parameters. The EPF
module builds a pyramid structure to extract multiscale features

by deploying group convolutions and dilated convolutions. The
Fig. 9. Subjective comparison of different methods on Shanghai Part A dataset.



X. Guo, K. Song, M. Gao et al. Future Generation Computer Systems 147 (2023) 328–338

I
a
Z

Table 6
Ablation studies on the critical modules in the GAPNet.
Methods Params FLOPs MAE RMSE

Baseline 2.79 3.1936 72.8 120.8
Baseline+ZCA 2.79 3.1936 70.6 111.5
Baseline+SE 2.80 3.1936 70.5 111.8
Baseline+EPF 2.85 3.2933 69.3 115.1
Baseline+EPF∥ZCA 2.85 3.2933 75.5 120.3
Baseline+EPF+ZCA 2.85 3.2932 68.6 113.8
Baseline+ZCA+EPF 2.85 3.2933 67.1 110.4

two modules jointly solve the scale problem effectively and effi-
ciently. Finally, we stack a set of transposed convolution blocks
as a decoder to generate a high-quality density map. Comparison
results on five crowd counting datasets verify the superiority of
the GAPNet in counting accuracy and efficiency. In future work,
we intend to further improve the proposed lightweight models by
combining the latest computational compress technologies, and
deploy them into edge devices.
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