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Abstract
Crowd counting is a practical yet essential research topic in computer vision, which has
been beneficial to diverse applications in smart city environment safety. The commonly
adopted paradigm in most existing methods is to regress a Gaussian density map that works
as the learning objective during model training. However, given the unavoidable identity
occlusion and scale variation in a crowd image, the corresponding Gaussian density map is
degraded, failing to provide reliable supervision for optimization. To address this problem,
we propose to replace the traditional Gaussian density map with a better alternation, namely
the smooth inverse map (SIM). The proposed SIM can reflect the head location spatially and
provide a smooth gradient to stabilize the model learning. Besides, we want the method to
learn more discriminative features to cope with the challenge of large-scale variations. We
deliver a multiscale aggregation (MA) to adaptively fuse features in different hierarchies to
benefit semantic information under diverse receptive filed. The SIM andMA are meant to be
complementary modules to guide the model in learning an accurate density map. Extensive
experiments on benchmark datasets demonstrate the effectiveness of the proposed method
compared with the state-of-the-art techniques.
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1 Introduction

The objective of crowd counting is to estimate the total number of heads in a given image or
video sequence. The topic has drawnmuch attention due to its wide and practical application
into smart city system, e.g., traffic control, and large gatherings [20]. Several crowd count-
ing methods have emerged over the last years, along with the growth of the computer vision,
especially with the advent of increasingly accurate deep learning models and architectures.

Early approaches to crowd counting fall into two categories, i.e., the detection-based
and regression-based methods [2, 3, 6, 8, 27]. The detection-based methods usually rely
on a sliding detector to count the people in a given image. Conversely, regression-based
techniques directly map the number of heads from the image feature domain. Although
these two approaches perform well in sparse scenes, they lose accuracy in densely crowded
scenarios because of various challenges such as large-scale variation, background clutter,
and severe occlusion, making the task more challenging.

The disruptive advent of deep learning fostered the design of several models for crowd
counting. For instance, the convolution neural network (CNN)-based methods [4, 12,
33] have been adopted to address the problems above and achieved extraordinary results
recently. The main idea behind the CNN-based method is to use a convolutional neural net-
work to regress a density map, and the sum of pixel values on the density map estimates the
number of people. The most commonly adopted density map in this domain is the Gaus-
sian density map, which can provide a significant gradient for network training. While the
density map provides both widespread and accurate training gradient, the network is still
difficult to select the diverse scales and losses [17]. Ideally, a high-quality density map
should provide a clear location of the heads in the image and provide continuous gradi-
ents for network training. Furthermore, large-scale variation has been the most common
and challenging problem in crowd counting due to the irregular placement of the cameras.
To handle this challenge better and enhance the counting accuracy, many multi-branch net-
works [1, 31, 33] have been proposed, which aims to extract the features of different sizes
from each branch. Thus, generating a high-quality density map and integrating multiscale
information are desired to enhance the counting performance.

In this paper, we introduce a novel method to generate the density map, namely the
smooth inverse map. The primary advantages of the smooth inverse map can be divided into
two aspects, i.e., the discriminative head locations and the beneficial gradient for network
training. Figure 1 reveals the difference between the Gaussian density map and the pro-
posed smooth inverse map. Figure 1(b) shows the Gaussian density map, which provides a
set of Gaussian blobs and makes the head position blurred in congested scenes. Figure 1(c)
is the smooth inverse map showing clear head positions in dense areas. Furthermore, we
design the multiscale aggregation (MA) module to tackle the large-scale variation. In order
to reduce the influence of scale variation, a natural way is to acquire diverse receptive fields
to fuse spatial information of different sizes. Thus, the MA module adopts three branches
with a skip connection to fuse features with diverse sizes. On this basis, we propose the
multiscale aggregation network (MANet) for crowd counting. The MANet employs a fea-
ture extractor to extract the low-level feature. Then, we connect two multiscale aggregation
modules to cope with the scale variation. And in the backend of the MANet, two trans-
posed convolution layers are utilized to upsample the feature map and output the prediction.
Overall, the contributions of this paper are summarized below.

1. A smooth inverse map is proposed for network training. The generation of the proposed
map is based on distance transform, which is different from the primarily used Gaussian
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Fig. 1 Difference between smooth inverse map and Gaussian density map. The red bounding box denotes the
congested crowd region. (a) Input image with large-scale variation and severe occlusions. (b) The Gaussian
density map. (c) The smooth inverse map

density map. It can provide an accurate head location and a smooth gradient, which is
helpful to guide the model to focus on the head region in training stage.

2. An MA module is designed to suppress the side effect of scale variations. Specifically,
it builds a three-branch architecture, and each branch can obtain information at various
scales with the help of different dilated convolution.

3. We perform comprehensive experiments on four crowd benchmark datasets to demon-
strate the superiority of the proposed method in terms of counting performance.

2 Related work

The most related work to this work can be divided into two aspects, i.e., density map
generation and multiscale feature fusion.

2.1 Density map generation

The generation of density maps plays a vanguard role for preparing the training data, and
a high-quality density map is crucial in training the network. Zhang et al. [32] proposed
a perspective information based density map, which aims to deal with the scale variation.
Unfortunately, it is quite difficult to acquire a perspective map. Zhang et al. [33] figured
out that the distance of two neighbouring persons could reflect the head size, and they
introduced a geometry-adaptive kernel-based density map, which can tackle the scale vari-
ation. This geometry-adaptive map has been the most commonly adopted map for crowd
counting. Taking into account the content-aware, Oghaz et al. [16] introduced the brute-
force search algorithm and 2D Gaussian filters to acquire more content. Furthermore, Xu
et al. [30] first employed the distance transform to generate a density map named distance
labelled map, which can accurately show the position of the head and ensure there is no
overlapping in dense areas. Olmschenk et al. [17] proposed the inverse kNN (ikNN) map,
which is generated by utilizing a similar method to distance transformation. This map can
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provide a significant gradient for network training. Similar to [30], Liang et al. [13] also
applied the distance transformation to generate density maps, which can represent exact
person locations. The proposed density map can simultaneously deal with crowd localiza-
tion and counting tasks. Based on the density map generation methods discussed above, we
propose the smooth inverse map.

2.2 Multiscale feature fusion

The scale variation is still a challenging problem in crowd counting. A natural way to
solve the scale variation is to fuse multiscale features. Zhang et al. [33] built a three-branch
architecture to fuse the feature maps with different resolutions. Convolution kernels of dif-
ferent sizes (5,7, and 9) are utilized on each branch to acquire the multiscale features. The
obtained features are fused through a convolution operation, and can better deal with the
scale variation. Kasmani et al. [11] designed a model which can take advantages of contex-
tual information with the local and global features to generate a high-quality density map.
Specifically, the model is generated by choosing the best HyperParameters. This model can
learn to tackle the scale variation in a simple way. Sindagi et al. [21] introduced a fusion
scheme that can integrate information from different layers. The scheme is contributed to a
scale-complementary block, which is adopted to acquire correlative features from the neigh-
bouring layers. Gao et al. [5] proposed a network aiming to tackle the perspective changes
and occlusions. It extracts features from three levels, i.e., global, local and pixel level, and
then merge these features by a DULR (down, up, left and right) module. Sindagi et al. [22]
employed the channel and spatial attention modules at different levels to integrate global
and local information. The generated feature map contains rich spatial information, which
is helpful to cope with the scale variation. Sajid et al. [18] utilized multi-layer branches to
merge the information with each other by catering the crowd scale. Song et al. [24] designed
a density head branch, to acquire density maps with different levels, then the feature maps
are weighted to generate the estimated density map, which can relieve the scale variation
well. Inspired by these methods, we propose the multiscale aggregation module to relieve
the scale variation by fusing multiscale features.

3 The proposedmethod

3.1 Theoretical analysis of the density map generation

In this subsection, we analyse three state-of-the-art density maps, i.e., Gaussian density
map, inverse kNN (ikNN) map and focal inverse distance transform (FIDT) map, which are
most related to the proposed smooth inverse map.

Gaussian densitymap The Gaussian density map is the most commonly used density map.
Supposing each head position is represented as a delta function. Then, a normalized Gaus-
sian kernel is convolved with the delta function and generate the Gaussian density map. In
a nutshell, it is formulated as,

M(z, σk) =
H∑

i=1

1√
2πσk

exp(− (z − zi)2

2σ 2
k

), (1)
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where zi is a pair of coordinates representing the head position, and H represents the total
number of head annotations in the image. σk denotes a value learned from other head loca-
tions. The value of σk is affected by the distance of the two nearest neighbour head. In dense
regions, the heads are closely spaced, reflecting a good indication of head size. However, in
sparse areas, the distance between the centre of the head annotation is large. The large σk

may lead to the confusion of pedestrian position information on the density map. The dis-
tance distribution curve of the Gaussian map (σk=3) is marked in purple in Fig. 2(b). The
distance distribution curve of the Gaussian density map tends to 0 faster than the other three
maps, which results in the loss of distant training information. Meanwhile, the visualiza-
tion of the Gaussian density diagram is provided in Fig. 2(c). It can be observed that the
Gaussian blobs make the head’s position indistinguishable.

Inverse kNN map To address the problem of Gaussian density map, the inverse kNN
(ikNN) map [17] was proposed to retain more precise and distant training details. It is
formulated as,

I = 1

M(z, k) + 1
. (2)

Here, M(z, k) is the full kNN map, which is formulated as,

M(z, k) = 1

k

∑
min

k
(

√
(z − zp)2,∀p ∈ P, (3)

where P denotes a set of head positions. The distance distribution curve of ikNN map is
shown in green in Fig. 2(b). It is observed that compared with the purple curve (Gaussian
density map), the green curve provides a considerable and steep gradient of each person,
which is beneficial to network training. In addition, compared with Fig. 2(c) and (d), the
ikNN map can provide the discriminative head annotation location.

Fig. 2 The comparison of different density maps. The GT and Est denote the ground truth and estimated
values, respectively. (a) Input image. (b) The distance from head annotation of Gaussian map, ikNN map,
FIDT map and smooth inverse map. (c) Gaussian map. (d)ikNN map. (e) FIDT map. (f) smooth map
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Particularly, when k equals to 1, the full kNN map has the same representation as the
distance transform formulation. The formulation is provided as,

M(z) = min
zp

(

√
(z − zp)2),∀p ∈ P, (4)

(4) represents the distance between the arbitrary pixel in an image and the nearest head
annotation.

Focal inverse distance transform map The focal inverse distance transform (FIDT) map
[13] refines the ikNN map (k = 1). It demonstrates that the ikNN map is a special case and
can be optimized by fine-tuning the hyperparameters. In addition to crowd counting, the
FIDT map can also carry out the task of crowd localization. Specifically, the FIDT map is
defined as,

F = 1

M(z)(α×M(z)+β) + 1
, (5)

where α and β are two hyperparameters, and they are set as 0.02 and 0.75, respectively. (5)
exhibits that the FIDT map adds a focal term, i.e., α × M(z) + β, to the index part of the
distance transform formulation, compared with the ikNN map. Based on the focal term, the
FIDT map enables the model to concentrate on the head areas. In Fig. 2(b), the blue curve
illustrates the distance distribution of the FIDT map. One can see that the pixel value of
FIDT map decays slower than ikNN map in the head regions. Meanwhile, Fig. 2(e) shows
that the FIDT map also ensures the head position while providing a curve that changes more
slowly than the iKNNmap. It means that the network should concentrate on the foregrounds
[13].

3.2 Smooth inverse map

Based on the above theoretical analysis, a high-quality ground truth density map should
contain the exact spatial location of the head. Beyond that, it is also necessary to provide
continuous and useful gradients to make the density map focus as much on the head region
as possible. Taking these points into account, we propose the smooth inverse map, which
can provide a smoother gradient than other three maps while ensuring the precise position
of each pedestrian. The proposed smooth inverse map is formulated as,

S = 1

M(z)(α×ln(1+M(z))+β) + 1
, (6)

where M(z) denotes the function of the distance transform. It’s obvious to notice that we
improve the distance transform formulation, aiming to make the pixel value decays slower
in the head region than other maps. Specifically, we add a term, i.e., α × ln(1+ M(z)) + β

to the exponential part of the distance transform formulation. The improvement can make
the density map provide a smoother curve (red curve in Fig. 2(b)), compared with the FIDT
map. Hence, the map is named as smooth inverse map in this work. To ensure a fair com-
parison, the values of α and β remain the same as the configuration of FIDT map (0.02 and
0.75).

3.3 Multiscale aggregationmodule

The scale variation is a chronic problem in crowd counting. Most existing methods alleviate
this problem by fusing multiscale information through multi-branch architecture. Mean-
while, multiply scales receptive fields are also desired because the size of heads varies
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continuously in an image. To this aim, we design a multiscale aggregation module which is
composed of three branches and a skip connection. Figure 3 provides the architecture of the
multiscale aggregation module.

Similar to [33], we adopt three branches to acquire various scale information. For each
branch, a 1×1 convolution is firstly utilized to reduce the channels of the input feature map.
Then, a 3×3 dilated convolution is adopted to enlarge the receptive fields. The dilated con-
volutions with different dilated ratios can capture more head sizes. Considering the head size
is tiny, especially in dense crowds, the large dilated ratios may lead to large gap between the
sizes of different receptive field. Furthermore, the crowd density is continuous, it requires a
dense scale range. Therefore, we choose the dilated ratios as 1, 2, and 3 to better adapt the
scale variation. Afterwards, we fuse the three refined features along channel dimension. In
this way, the structure can acquire the multiscale information of the heads. Next, a skip con-
nection is leveraged to concatenate the fused feature and the input feature. Finally, a 3 × 3
convolution layers is used to generate the estimated the results. The multiscale aggregation
module can be represented as,

O(x) = x ⊕ (Cat(Di-Conv3(Conv1(x)))), i ∈ {1, 2, 3}, (7)

where x and O(x) denote the input and output features, respectively. ⊕ is a channel-wise
summation operation. Di-Conv3 represents the dilated convolution with dilated ration i.

3.4 The framework of the network

The architecture of the proposed multiscale aggregation network is depicted in Fig. 4. It
consists of three modules, i.e., frontend network module, multiscale aggregation module
and transposed convolution layer module.

We employ the HRNet [25] as frontend network to extract the basic feature map. The
frontend network consists of four stages, and the output feature map is generated in the
fourth stage. However, the extracted feature map suffers from the scale variation. To tackle
this problem, we design the multiscale aggregation module. Specifically, two multiscale
aggregation modules are cascaded after the HRNet to sufficiently integrate the multiscale
information. Finally, two transposed convolution layers are utilized as the backend network
to upsample the feature map to the same resolution as the input. The whole network can be
formulated as,

P(I) = 2 × T-Conv3(2 × Os(Cat(Stage-i(I )))), i ∈ {1, 2, 3, 4} , (8)

Fig. 3 The architecture of the multiscale aggregation module
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Fig. 4 The architecture of the proposed MANet for crowd counting

where I and P denote the input image and its prediction, respectively. Os(·) represents a
function of the multiscale aggregation module. Stage-i means the i-th stage process of the
HRNet. Cat(·) is the concatenated operation and T-conv(·) is the transposed convolution

3.5 Loss function

During training phase, we employ MSE loss to optimize the model by calculating the
Euclidean distance between ground truth map and predicted density map. The loss function
is defined as,

LMSE(E,G) = 1

N

N∑

i=1

(Ei − Gi)
2, (9)

where E and G denote the estimated value and the ground truth value, respectively. N is the
total number of the heads.

4 Experiments and analysis

In this section, we evaluate the counting performance on four public crowd counting
datasets, i.e., ShanghaiTech [33], UCF-QNRF [10], UCF CC 50 [9] and JHU-Crowd++
[23]. Besides, the implementation details and evaluation metrics are detailed. Finally, a
series of ablation experiments are conducted to prove the superiority of the components.

4.1 Implementation details

The training data is randomly cropped and horizontally flipped. The reason why not using
vertical flipping is that the vertical flipping reverse the positions of the head and feet, which
is unfit for counting accuracy. Specifically, for ShanghaiTech dataset, the crop size is set to
256 × 256. For other datasets, the crop size is set to 512 × 512. During the training stage,
the batch size is set to 4 for UCF-QNRF dataset. For other datasets, the batch size is set to 8.
We employ Adam optimizer with a learning rate at 1e-4 to train our network and the decay
rate is set to 0.995. The experiments are conducted in the PyTorch framework [13] with two
NVIDIA GTX3060 GPUs.



Multimedia Tools and Applications

4.2 Evaluationmetrics

To evaluate the performance of the proposed model, we apply the Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE), respectively.

MAE = 1

C

C∑

i=1

∣∣∣GT i − Esti
∣∣∣ , (10)

RMSE =
√√√√ 1

C

C∑

i=1

∣∣GT i − Esti
∣∣2, (11)

where C denotes the number of testing samples. GT i and Esti represent the ground truth
and estimated count of the i-th sample, respectively.

4.3 Comparative analysis

Comparative experiments are performed on four public crowd counting datasets, i.e., Shang-
haiTech, JHU-Crowd++, UCF-QNRF and UCF CC 50. The comparative results with the
state-of-the-art competitors are presented in Table 1.

ShanghaiTech [33] is the most widely used crowd counting dataset. Due to the different
attributes of the dataset, it is divided into two parts, i.e., PartA and Part B. The former con-
sists of 482 images crawled from the websites, and it prefers high-density crowd scenes. By
contrast, the Part B has 716 images collected from a busy street, and it focuses on sparse

Table 1 Comparative results on the Part A, Part B, JHU++, UCF-QNRF and UCF CC 50 datasets

Method Part A Part B JHU++ UCF-QNRF UCF CC 50

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN [33] 110.2 173.2 26.4 41.3 188.9 483.4 277.0 426.0 377.6 509.1

SFCN [29] 64.8 107.5 7.6 13.0 77.5 297.6 102.0 171.4 214.2 318.2

A-CCNN [11] 85.4 124.6 19.2 31.5 171.2 453.1 367.3 - - -

LSC-CNN [19] 66.4 117.0 8.1 12.7 225.6 302.7 120.5 218.2 - -

CSRNet [12] 68.2 115.0 10.6 16.0 85.9 309.2 - - 266.1 397.5

PCCNet [5] 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 - -

MUD-iKNN [17] 68.0 117.7 13.4 21.4 – – 104.0 172.0 237.7 305.7

CG-DRCN [23] 64.0 98.4 8.5 14.4 71.0 278.6 112.2 176.3 – –

SANet [1] 67.0 104.5 8.4 13.6 91.1 320.4 – – 258.4 334.9

MBTTBF [21] 60.2 94.1 8.0 15.5 81.8 299.1 97.5 165.2 233.1 300.9

PaDNet [26] 59.2 98.1 8.1 12.2 – – 96.5 170.2 185.8 278.3

KDMG [28] 63.8 99.2 7.8 12.7 69.7 268.3 105.6 180.5 – –

RAZ [14] 65.1 106.7 8.4 14.1 – – 116.0 195.0 – –

HA-CCN [22] 62.9 94.9 8.1 13.4 – – 118.1 180.4 256.2 348.4

DUBNet [7] 64.6 106.8 7.7 12.5 – – 105.6 180.5 243.8 329.3

CAN [15] 62.3 100.0 7.8 12.2 100.1 314.0 107.0 183.0 212.2 301.3

Ours 57.7 101.9 7.3 14.3 61.3 252.5 88.8 158.6 143.2 242.5

The best results are highlighted in bold
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Fig. 5 Visualization results on different datasets. From tom to bottom are visualized results on Shanghai
Part A, Part B, UCF-QNRF, UCF CC 50 and JHU++ datasets. From left to right are the input image, the
ground truth density map and the estimated density map

crowds. For Part A dataset, the MANet scores 57.7 in MAE, which ranks first place. Mean-
while, it scores 101.9 in RMSE, which is a competitive result. Specifically, compared with
MUD-ikNN [17] which employs the inverse map, the proposed method improves the MAE
and RMSE improved by 11.0% and 5.2%, respectively. For Part B dataset, the proposed
model obtains the best result of 7.3 in MAE. Compared with PCCNet [5] which is spe-
cific to scale variation problem, the MANet improves the MAE by 33.6%. Furthermore, it
achieves a competitive result in RMSE (14.3).

JHU-CROWD++ [23] is a dataset composed of 4,372 images (2,722 for training, 500
for validation, and 1,600 for test). The images present large scale without constraint. The
head annotations are 1,515,005. The JHU-Crowd dataset also collects some weather-based
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images including rainy, hazy and snowy, which are crucial to train a robust model. It can be
observed that the MANet exhibits the best results across the overall methods. Specifically, it
scores 61.3 and 252.5 in MAE and RMSE, respectively. It improves the second-best method
CG-DRCN [23] by 13.7% in MAE and 9.4% in RMSE. These results demonstrate that the
MANet is fit for large-scale variation crowds.

UCF-QNRF [10] has 1,535 high-resolution images with wide viewpoints and vary-
ing lighting. There are 1.25 million head annotations on the dataset. It indicated that the
UCF QNRF is a fairly dense dataset. One can see that it achieves the best results of 88.8
and 158.6 in MAE and RMSE. Compared with the PaDNet [26], which designs a feature
enhancement layer to fuse different scale information, while the MANet proposes the mul-
tiscale aggregation module to fuse multiscale information and outperforms it by 8.0% and
6.8% in terms of MAE and RMSE, respectively.

UCF CC 50 [9] consists of 50 images, each presenting an extremely congested scene.
The dataset has a total of 63,974 head annotations, with an average of 1,280 head annota-
tions per image. It is a very challenging dataset due to the limited number of samples and
the dense crowds in the image. On the dataset, it demonstrates that the MANet scores 143.2
and 242.5 which are both best in MAE and RMSE, respectively. Compared with the PaDNet
[26], it has an improvement of 22.9% and 12.9%, respectively. Some visualization results
on Shanghai Part A, Part B, UCF-QNRF, JHU++ and UCF CC 50 datasets are shown in
the Fig. 5. It proves that both the estimated crowd density map and counting number are
closely related to the ground truth.

4.4 Ablation study

To further investigate the effectiveness of different components of MANet, we conduct
ablation studies on Part A dataset. The ablation studies are divided into two aspects, i.e., the
effectiveness of the smooth inverse map and the effectiveness of the multiscale aggregation
module. The detailed network configurations are depicted as follows.

1. “baseline” represents the basic network that adopts HRNet with Gaussian density map.
2. “baseline+ikNN” represents the basic network that adopts HRNet with ikNN map.
3. “baseline+ FIDT” represents the basic network that adopts HRNet with FIDT map.
4. “baseline+ SI” represents the basic network that adopts HRNet with smooth inverse

map.

Table 2 Ablation study on Part A

Methods MAE RMSE

baseline +kNN 69.3 138.7

baseline +ikNN 62.6 113.1

baseline +FIDT 62.1 108.8

baseline +SI 60.3 109.8

baseline +SI+SSM(1) 60.0 100.0

baseline +SI+SSM(2) 57.7 101.9

baseline +SI+SSM(3) 62.7 118.0

The best performances are highlighted in bold, and the second-best performances are underlined
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Fig. 6 Comparative results with different configurations. (a)∼(f) represent the input image, ground truth
density map, estimated kNN map, estimated ikNN map, estimated FIDT map and estimated smooth inverse
map. “GT” and “Est” denote the ground truth counts and the estimated counts, respectively

5. “baseline+ SI+ module(·)” represents the basic network that adopts HRNet with smooth
inverse map, and add n module(s) to the HRNet.

1) Effectiveness of the smooth inverse map: We first explore the influence of the smooth
inverse map. Table 2 shows the experimental results of different maps on ShanghaiTech
Part A. By comparing the first four rows, it can be seen that these four density maps perform
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well. The kNN map achieves the worst performance with the MAE and RMSE of 69.3 and
138.7. The ikNN map scores 62.6 and 116.1 in MAE and RMSE, respectively. Compared
with the kNN map, it has an improvement by 9.7% and 18.5%, respectively. By contrast,
the FIDT map performs better than the above maps. Its MAE and RMSE scores are 62.1
and 108.8, respectively. The proposed smooth inverse map exhibits the best MAE of 60.3.
Although the score of RMSE is not the lowest, it is only 0.9% higher than the FIDT map.
But the MAE is lower 2.9% than FIDT. The visually results are depicted in Fig. 6.

2) Effectiveness of the multiscale aggregation module: We figure out the impact of the
multiscale aggregation module on counting performance. As reported in the last three rows
in Table 2, one can observe that increasing a multiscale aggregation module is helpful to
enhance the MAE and RMSE. Specifically, it achieves 0.5% and 8.9% improvement in
MAE and RMSE, respectively. Increasing the number of multiscale aggregation modules
to 2, the counting performance achieves the overall best performance with the MAE and
RMSE of 57.7 and 101.9. Compared with the configuration without adding modules, the
MAE and RMSE decrease 4.3% and 7.2%, respectively. Continue to increase the number of
the multiscale aggregation modules to 3, and we can see a decrease in counting performance.
Specifically, the scores of the MAE and RMSE increased by 8.7% and 15.8% compared
with the best model.

5 Conclusion

In this paper, we propose a multiscale aggregation network with smooth inverse map for
crowd counting. The proposed smooth inverse map is generated based on the distance trans-
form. It can provide a smooth distance distribution curve, which is beneficial for regress a
high-quality map. Experimental results indicate that the smooth inverse map performs bet-
ter than other maps. The designed multiscale aggregation network adopts the HRNet as the
backbone to extract the low-level feature, and two transposed convolution layers are utilized
to upsample the density map. Two multiscale aggregation modules are employed to address
the large-scale variation. The multiscale aggregation module is built with a three-branch
architecture and a skip connection. It can alleviate the problem of scale variation by fus-
ing the multiscale information. The multiscale aggregation network with the smooth inverse
map achieves the state-of-the-art performance on four crowd counting datasets. In the future
work, we will adopt the proposed smooth inverse map to crowd localization because it can
provide distinguishable head position for each person in a congested region.
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