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Abstract
Crowd counting plays a crucial rule in the development of smart city. However, the problems of scale variations and

background interferences degrade the performance of the crowd counting in real-world scenarios. To address these

problems, a novel attentive hierarchy ConvNet (AHNet) is proposed in this paper. The AHNet extracts hierarchy features

by a designed discriminative feature extractor and mines the semantic features in a coarse-to-fine manner by a hierarchical

fusion strategy. Meanwhile, a re-calibrated attention (RA) module is built in various levels to suppress the influence of

background interferences, and a feature enhancement (FE) module is built to recognize head regions at various scales.

Experimental results on five people crowd datasets and two cross-domain vehicle crowd datasets illustrate that the

proposed AHNet achieves competitive performance in accuracy and generalization.
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1 Introduction

Crowd counting is a new and developing problem in

computer vision. It has a wide range of applications in

smart city, e.g., public safety, urban planning smart envi-

ronment sensing, and smart homes [1, 38]. However, the

problems of scale variation caused by perspective of

camera, and the background interferences in complex

scenes pose a great challenge to accurately predict head

regions in dense crowd scenarios.

To address this problem, a plethora of approaches have

been put forward in the literature [6, 27]. Early approaches

mainly consist of detection-based methods and regression-

based methods. Recently, convolutional neural networks

(CNN) have been extensively explored and exhibited out-

standing performance in crowded counting.

Specifically, some CNN-based methods employ multi-

column with different larger kernel sizes to extract the

scale-aware context, which are difficult to train and could

lead to information redundancy [23, 24, 36]. To address

these issues, several studies utilize a single column network

to extract the fixed receptive field, but the diverse spatial

context information can not be obtained [4, 7, 15, 25].

Moreover, some literatures adopt attention mechanism to

improve the prediction accuracy [17, 37]. But they ignored

the effect of scale information on the prediction of out-

comes. Overall, the aforesaid approaches suffer from sub-

stantial accuracy degradation when applied to crowd

scenarios with large-scale fluctuations and heavy

congestion.

In this paper, the attentive hierarchy ConvNet (AHNet)

is proposed to alleviate the negative effects of the scale

variations and background interferences, and improve the

performance of crowd counting in dense crowd scenarios.

The AHNet consists of a discriminative feature extractor

and a hierarchical feature aggregator. The discriminative

feature extractor extracts multi-scale features under dif-

ferent receptive field. The hierarchical feature aggregator

fuses multi-layer features with attention and scale infor-

mation to generate high-quality density maps.

Specifically, the hierarchical feature aggregator contains

a re-calibrated attention (RA) module and a feature
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enhancement (FE) module. The RA module adopts a RA

module to integrate the intra- and inter-channel information

by aggregating the input features along the vertical and

horizontal directions into two separate direction-aware

feature maps. Thus, it can capture long-range dependencies

of the input feature map to pay more attention to the head

regions and suppress the background interferences. The FE

module is built to extract more scale features by expanding

the fields-of-view of each convolutional layer. Thus, it

enables the network to recognize head regions at various

scales. In sum, the contributions of the proposed AHNet

are as follows.

(1) An RA module is built in various levels to enhance

the features from hierarchical layers. Meanwhile, it

incorporates the inter-channel relationships and cap-

tures intra-channel dependencies simultaneously, to

suppress the influence of background interferences.

(2) An FE module is built to extract more scale features

by expanding the fields-of-view of each convolu-

tional layer. It enables the network to recognize head

regions at various scales.

(3) With the help of RA and FE modules, the AHNet is

proposed to address the problems of scale variations

and background interferences, and promote the

accuracy of counting in complex crowd scenarios.

The rest of the paper is described as follows. Section 2

provides an overview of the related works. The framework

of AHNet is introduced in Sect. 3. The experimental results

and discussions are explained in Sect. 4. The conclusion is

described in Sect. 5.

2 Related work

Crowd counting has drawn much attention and yielded

numerous effective methods in the past decades. Many

algorithms have been proposed to deal with the crowd

counting task, and they can be broadly categorized into

traditional-based methods and CNN-based methods. The

early traditional-based methods are based on detection and

regression, which work well in crowd scenarios with low

density. Recently, benefiting from the powerful learning

ability of CNNs, Fu et al. [5] firstly put forward the CNN-

based model to improve accuracy for crowd counting in

dense crowd scenarios. Subsequently, the CNN-based

methods have become the mainstream in the field of crowd

counting. The readers are suggested to refer to some survey

papers [6, 20, 26, 27] for more details about the problems

and the state-of-the-art methods in this domain.

2.1 Traditional-based methods

Traditional counting approaches mainly concentrated on

detection-based schemes and the regression-based counting

methods. The detection-based approaches [30] utilized a

sliding window-like detector to detect pedestrians and

count the quantity in the crowd. They used low-level

characteristics such as Haar wavelets, histograms of ori-

ented gradients, and boundaries localized from the whole

human body. However, their performance would degrade

because of the occlusion and background clutter.

The regression-based counting methods [3, 11] improve

the counting accuracy by learning a mapping between

image features and the total count density map. For

instance, Chan et al. [2] used Gaussian process regression

to learn the relationship between the extracted features and

the population counts. Chen et al. [3] introduced the con-

cept of cumulative attributes to construct a regression

model from sparse and unbalanced training data. Idrees

et al. [11] estimated counts using a variety of sources,

including texture repetition, low-confidence head identifi-

cation, and frequency-domain analysis. Unfortunately, in

highly dense scenarios, even the best-performing detection

approaches and regression-based approaches are unable to

meet the requirements of crowd counting tasks due to the

problems of scale variations and background interferences.

2.2 CNN-based methods

CNN-based methods [20] have obtained remarkable pro-

gress in the crowd counting domain. Some methods

extracted the different scale features using multi-column

architectures with different kernel sizes. Zhang et al. [36]

utilized a three-column CNN, named MCNN, which dealt

with the scale variation in dense scenarios. Sam et al. [23]

introduced switching multi-column architecture to extract

the features among different scale. Shi et al. [24] extracted

scale information utilizing three parallel filters. However,

these methods are difficult to train, and could lead to a lot

of information redundancy [6, 15].

To address these problems, many works adopt single

deeper networks to acquire larger receptive fields. For

example. Sindagi and Patel [25] adopted an end-to-end

cascaded CNN which learned high-level global priors to

help estimate density maps from images of large variations.

Kasmani et al. [13] introduced a method which can gen-

erate the different scale density maps adaptively for various

patches to estimate the corresponding density map. Gao

et al. [7] proposed a multi-task perspective crowd counting

network that encoded hierarchical features and perspective

variations for the crowd scenarios. Sam et al. [22] pre-

sented an incrementally growing CNN that was replicated
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into two child regressors to predict the suitable expert for a

given test patch. Ding et al. [4] introduced an encoder–

decoder CNN that used the feature maps from both the

encoding and decoding subnetworks to produce a more

faithful density map which can estimate the number of

persons more reliable. Li et al. [15] adopted dilated con-

volution operation to increase the receptive field for

boosting performance on crowd counting. Although the

aforementioned deeper CNNs approaches are effective to

solve the problems of scale variations and background

interferences, they ignore the crowd attention information.

In addition, several approaches equipped with attention

mechanism have been proposed and achieved great suc-

cess. Liu et al. [17] utilized an attention mechanism to

decide which detection and regression modules have more

reliable results to select appropriate counting models at

different locations. Zhu et al. [37] presented an attentive

multi-stage CNN which fuses coarse-to-fine hierarchical

information and soft attention information to make the

network pay more attention to foreground information. Zou

et al. [39] introduced the adaptive capacity multi-scale

CNNs, which can assign different attention weights for

high-density and sparse regions. Gao et al. [8] presented a

spatial-/channel wise attention regression network to

acquire the discriminative features of each channel and

pixel-wise context information of each image for crowd

counting.

3 Framework of AHNet

3.1 Network structure

The overall architecture of the AHNet is depicted in Fig. 1.

It mainly contains a discriminative feature extractor and a

hierarchical feature aggregator. The original crowd image

is fed into VGG-16 as discriminative feature extractor, and

it utilizes feature maps from multiple convolutional layers

to encode multi-scale features. There are five feature levels

with downsampling ratios of 2; 4; 8; 16; 32f g respectively.

The corresponding feature maps are denoted as

I1; I2; I3; I4; I5f g. The feature map Pi in each decoding stage

is generated by the combination of Ii and Piþ1.

The process of hierarchical feature aggregator is as

follows. Firstly, the feature map Pi from a higher level is

up-sampled using the nearest-neighbor interpolation to

make it the same size as Ii. Then, the upsampled map is

combined with Ii by channel-wise concatenation. Further-

more, a 3� 3 convolutions with ReLU activation is

adopted to build the final feature map Pi. The feature

representations are denoted to P1;P2;P3;P4f g, which are

generated hierarchically using the features of different

levels in the fusion feature extractor. However, due to the

limited receptive field of specific Ii, it is only suitable to

predict heads within a narrow range of scales.

To take full advantage of multi-level features, an RA

module and an FE module are built in hierarchical feature

aggregator. The RA module enables the channel-wise

enhancement with the goal of boosting the foreground at

various levels. In addition, the FE module pays attention to

relevant spatial locations in the feature maps. The final

high-quality density map is produced by fusing features

from different enhanced layers.

3.2 Re-calibrated attention module

The RA module can be regarded as a computational unit to

improve the expressive capability of learned features. The

architecture of RA module is depicted in Fig. 2. It takes the

intermediate feature map F ¼ ½f1; f2; . . .; fC� 2 RC�H�W as

input and generates an augmented feature M ¼
½m1;m2; . . .;mC� as output.

In order to encode the attention information, the

majority of current CNN models produce a channel atten-

tion map using the global pooling [10]. However, the

global pooling operation squeezes global spatial informa-

tion into a channel description. Thus, it is hard to reserve

the location information of the head. To address this

problem, we take the feature map F as input and re-cali-

brate it along with the horizontal direction and vertical

direction using two spatially pooling kernels (H, 1) and

(1, W), respectively.

The outputs of the cth channel at height h and width w

are denoted as,

ghcðhÞ ¼
1

W

X

0� i\W

fcðh; iÞ;

gwc ðwÞ ¼
1

H

X

0� j\H

fcðj;wÞ:
ð1Þ

These two recalibration processes fuse the features in two

spatial directions, and generate a pair of direction-aware

feature maps. Thus, more attentions are paid on two spatial

directions and the background information can be

restrained. The two branches are concatenated as follows,

s ¼ dðSð½gh; gw�ÞÞ; s 2 RC=r�ðHþWÞ; ð2Þ

where d denotes a non-linear activation function. Sð�Þ
represents the concatenation operation along the spatial

dimension. s is a middle feature map encoding horizontal

and vertical spatial information.

The feature map along the spatial dimension is split into

two independent maps, i.e., sh 2 RC=r�H and sw 2 RC=r�W ,

where r denotes the reduction ratio to control the block

size. Subsequently, two 1� 1 convolutional operations are

utilized to retain the final output with the same input
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channel number. The spatial attention weights are denoted

as,

zh ¼ rðConv1ðshÞÞ;
zw ¼ rðConv1ðswÞÞ;

ð3Þ

where rð�Þ is the sigmoid activate function. Conv1ð�Þ
indicates a convolution operation with the kernel size of

1� 1. Finally, the output of the attention map M is pre-

sented as,

M ¼ fcði; jÞ � zhðiÞ � zwðjÞ: ð4Þ

3.3 Feature enhancement module

To further extract the scale information of the attention

map, the FE module is built, as shown in Fig. 3. The

attention map M 2 RC�H�W is divided into two feature

maps, i.e., M1 2 RC=2�H�W and M2 2 RC=2�H�W , which

are transferred into two pathways for collecting different

types of contextual information.

In the first pathway, M1 generates the intermediate

feature layer V1 as,

V1 ¼ Up Conv3½AvgðM1Þ�f g; ð5Þ

where Upð�Þ represents the upsampling operation. Conv3ð�Þ
indicates a convolution operation with the kernel size of

3� 3. Avgð�Þ is the average pooling operation and it can
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Fig. 1 Flowchart of the AHNet for crowd counting

C×H×W

C×H×1

C×1×W

P C×1×H

C

C/r×1×(W+H)

Bn+ReluSp

P
C/r×H×1

Sig

Sig

C/r×1×H

C/r×1×W

C×H×W

Vp

Hp

F

Conv1Vp Hp

Conv1

: horizontal pool: vertical pool : kernel size=1

Conv1

Conv1

: BatchNorm+Relu 

P : permute C : concatenateSp : split Sig : Sigmoid

s

: multiply

M

Bn+Relu

Fig. 2 The architecture of the

RA module

1102 Cluster Computing (2023) 26:1099–1111

123



change the size of the feature map. Avgð�Þ operation

cooperates with Conv3ð�Þ operation to obtain the scale

information from the attention map.

Then, the enhanced middle feature map of the first path

can be formulated as,

M0
1 ¼ rðM1 � V1Þ � Conv3ðM1Þ; ð6Þ

where r denotes the sigmoid function. � and � denote the

element-wise summation and multiplication, respectively.

In the second pathway, a convolution operation is per-

formed to retain the original spatial context. It is formu-

lated as,

M0
2 ¼ Conv3ðM1Þ: ð7Þ

Finally, the two pathway are concatenated by,

O ¼ CatðM0
1;M

0
2Þ; O 2 RC=G�H�W ; ð8Þ

where Catð�Þ represents the concatenation operation.

3.4 Density map generation

Supposing the head coordinate as xi, the head with an

impulse function is formulated as dðx� xiÞ. The whole

heads of the image can be donated as
PN

i¼1 dðx� xiÞ,
where N represents the quantity of heads in the images. As

the heads are dispersed, the Gaussian kernel is adopted to

blur the labelled heads as follows,

MðxÞ ¼
XN

i¼1

dðx� xiÞ 	 GrðxÞ; ð9Þ

whereM(x) is the density map. 	 represents the convolution
operation, and Gr represents the Gaussian kernel. The

crowd count is obtained by integrating over the density

map.

3.4.1 Loss function

The network is trained by minimizing the Euclidean dis-

tance between the predicted density map and the ground

truth density map,

loss ¼ 1

M

XM

i¼1

FhðIiÞ � Yik k22; ð10Þ

where M indicates the amount of training samples. Ii rep-

resents the ith input image. FhðIiÞ denotes the estimated

crowd count. Yi is the ith ground truth. FhðIiÞ and Yi
employ the estimated crowd count and the ith ground truth,

respectively.

4 Experimental results and analysis

4.1 Implementation details

The training and test are performed on an NVIDIA

RTX3090 GPU with 24G memory in a PyTorch frame-

work. The Adam optimization is adopted with the batch

size of 6. According to the previous works [8, 25], the

learning rate is initialized as 10�5 and reduces �0:995 per

epoch. All the images and the corresponding density maps

are resized to 576� 768: The epoch number is set to 500.

4.2 Evaluation metric and datasets

The accuracy of the crowd counting evaluation is usually

evaluated via the mean absolute error (MAE) and root

mean squared error (RMSE), which are formulated as

follows,

MAE ¼ 1

N

X
ci � ĉij j; ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
ci � ĉij j2

r
; ð12Þ
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C/2×H×W
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Fig. 3 The architecture of the

FE module
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where N is the amount of testing images. ci and ĉi are

ground truth and the predicted values of the ith image,

respectively.

4.3 Experimental analysis

The proposed method is evaluated on five benchmark

datasets, including ShanghaiTech [36], UCF_CC_50 [11],

UCF-QNRF [12], WorldExpo’10 [33] and NWPU-Crowd

[31]. The experimental results are summarized in Table 1.

The ShanghaiTech dataset [36] contains two parts,

namely Part_A and Part_B. The former part has 482 ima-

ges (270 images for training, 30 images for validation, and

182 images for test). The latter part includes 716 images

(360 images for training, 40 images for validation, and 316

images for test). In ShanghaiTech Part_A, the proposed

AHNet scores 67.5 in MAE and 106.0 in RMSE, both

ranking the second place among the competitors. Even

though the performance is slightly lower than DENet [18],

the proposed results are still very competitive. In Shang-

haiTech Part_B, the proposed method achieve the lowest

MAE and RMSE among the competitors. The proposed

AHNet scores 7.7 and 11.9 in terms of MAE and RMSE,

which both perform best. Especially, compared with the

SCAR [8] which also adopts the attention mechanism, the

AHNet reduces the MAE and RMSE by 18.9% and 21.7%.

The improvement is primarily due to the fact that the

proposed network not only contains attentional information

extracted by the RA module but also obtains information at

different scales through the FE module, which facilitates

the network to generate more accurate prediction results.

The UCF_CC_50 dataset [11] incorporates 50 images

are composed of dense crowd scenarios. Following the

general principle [11], fivefold cross-validation strategy is

adopted for performance evaluation. The proposed method

scores 197.3 and 268.5 in MAE and RMSE, respectively.

The AHNet ranks the first place compared with other state-

of-the-art approaches. Compared with AMCNN [37],

which adopted the hierarchical strategy to tackle the

problem of scale variation in congested scenarios, the

proposed model illustrates an improvement of 27.6% and

30.7% in MAE and RMSE. The reason is that the layers at

each level in the AMCNN [37] network are independent of

the other layers, while the AHNet fuses multi-layer feature

with attention information and scale information.

The UCF-QNRF dataset [12] includes 1535 challenging

images (1081 images for training, 120 images for valida-

tion, and 334 images for test). It varies within a large range

in crowd counts (from 49 to 12,865). The proposed AHNet

scores 108.2 and 186.8 in MAE and RMSE, both ranking

the first place among the competitors. Compared with

DENet [18], which utilizes dilated convolution and trans-

posed convolution to solve the scale change problem, the

proposed AHNet improves the score of MAE and RMSE

by 10.6% and 8.9% as the AHNet not only utilizes FE

module to focus on the relevant spatial locations at various

Table 1 Objective evaluation of the proposed method and the competitor in terms of MAE and RMSE

Method Part_A Part_B UCF_CC_ 50 UCF-QNRF WorldExpo10 NWPU-Crowd

MAE RMSE MAE RMSE MAE RMSE MAE RMSE S1 S2 S3 S4 S5 Avg MAE RMSE

MCNN [36] 110.2 173.2 26.4 41.3 377.6 509.1 277.0 509.1 3.4 20.6 12.9 13.0 8.1 11.6 232.5 714.6

CMTL [25] 101.3 152.4 20.0 31.1 322.8 341.4 252.0 514.0 3.8 32.3 19.5 20.6 6.6 16.6 – –

Switch-CNN [23] 90.4 135.0 21.1 30.1 318.1 439.2 228.0 445.0 4.4 15.7 10.0 11.0 5.9 9.4 – –

DecideNet [17] – – 20.8 29.4 – – – – 2.0 13.1 8.9 17.4 4.8 9.2 – –

C-CNN [24] 88.1 141.7 14.9 22.1 – – – – 3.8 20.5 8.8 8.8 7.7 9.9 – –

A-CCNN [13] 85.4 124.6 19.2 31.5 367.3 423.7 – – – – – – – – 176.5 520.6

SaCNN [34] 83.8 139.2 16.2 25.8 314.9 424.8 – – 2.6 13.5 10.6 12.5 3.3 8.5 – –

AMCNN [37] 76.1 110.7 15.3 27.4 272.5 387.5 – – – – – – – – – –

PCCNet [7] 73.5 124.0 19.2 31.5 240.0 315.5 148.7 247.3 1.9 18.3 10.5 13.4 3.4 9.5 112.3 457.0

DNCL [35] 73.5 112.3 18.7 26.0 288.4 404.7 – – 1.9 12.1 20.7 8.3 2.6 9.1 – –

IG-CNN [22] 72.5 118.2 13.6 21.1 291.4 349.4 – – 2.6 16.1 10.15 20.2 7.6 11.3 – –

ACM-CNN [39] 72.2 103.5 17.5 22.7 291.6 320.9 – – 2.4 10.4 11.4 15.6 3.0 8.56 – –

FMLF [4] 69.8 114.7 10.2 14.9 271.3 376.3 – – 2.8 12.1 9.4 15.6 3.5 8.68 – –

CSRNet [15] 68.2 115.0 10.6 16.0 266.1 397.5 – – 2.9 11.5 8.6 16.6 3.4 8.6 121.3 387.4

SCAR [8] 66.3 114.1 9.5 15.2 259.0 374.0 264.8 418.3 – – – – – – 110.0 495.3

DENet [18] 65.5 101.2 9.6 15.4 241.9 345.4 121.0 205.0 2.8 10.7 8.6 15.2 3.5 8.2 – –

AHNet (ours) 67.5 106.0 7.7 11.9 197.3 268.5 108.2 186.8 1.4 10.5 8.4 8.0 2.5 6.16 100.2 364.1

The best results are highlighted in bold
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but also adopts the RA module to extract attention infor-

mation to suppress the estimation error for background

region.

The WorldExpo’10 dataset [33] contains 3380 frames in

103 scenes in the training set and 600 labelled frames from

the remaining 5 scenes in the testing set. According to [33],

the comparisons are performed on five scenes with a con-

figured ROI. The compared value of MAE in these five

scenes (i.e., s1, s2, s3, s4 and s5) and the average value

(Avg) are shown in Table 1. It illustrates that the proposed

AHNet outperforms other competitors in s1, s3, s4 and s5.

For the second scene (s2), it ranks the second place and

scores 10.5 which is slightly higher than ACM-CNN

(10.4). However, in the index of average MAE, the AHNet

scores 6.16 which surpasses the second-best method DENet

by 24.9%.

The NWPU-Crowd dataset [31] is a newly released

benchmark crowd dataset. It includes 5109 images with

2,133,375 head annotations, which are divided into three

parts (3109 images for training, 500 images for validation,

and 1500 images for test). As it has been released only

recently, there are relative few comparative methods

reported their results on this dataset. As shown in Table 1,

the proposed AHNet scores 100.2 and 364.1 in terms of

MAE and RMSE both performing best. Compared with

PCCNet [7], which is also adopted the attention mecha-

nism, the AHNet takes into account the hierarchy features

and utilizes attention mechanism to further improve the

estimated accuracy.

Some subjective results are depicted in Fig. 4. It shows

that the estimated results of the proposed method are close

to the ground truth in both sparse and congested crowd

scenes.

4.4 Generalization ability analysis

4.4.1 Cross-dataset analysis

To validate the generalization ability of the proposed

AHNet, we train the model on ShanghaiTech Part_A, and

deploy the trained model on the Part_B and UCF-QNRF

datasets. Comparative results with MCNN [36], CRSNet

[15], and SCAR [8] are shown in Table 2. It depicts that

the proposed AHNet model trained on ShanghaiTech

Part_A scores 13.0 and 24.4 on ShanghaiTech Part_B

dataset, and 165.2 and 334.3 on UCF-QNRF dataset in

terms of MAE and RMSE. Compared with the three

methods, the proposed method performs better perfor-

mance on generalization.

4.4.2 Cross-domain analysis

To further verify the generalization ability of the proposed

model, the cross-domain analysis is performed on two

vehicle datasets, i.e., CARPK and PUCPR?. These two

datasets composed of vehicle images from the drone view

and high-rise buildings, respectively. The CARPK dataset

contains 89,777 cars in various scenes from 4 different

parking lots, while PUCPR? dataset contains about 17,000

cars in total. To evaluate the counting performance, the

evaluation protocol in their benchmark is adopted [14].

Table 3 reports the comparative results of the proposed

method and other vehicle counting methods

[9, 16, 19, 21, 28, 29, 32]. It shows that the proposed

method scores 9.7 and 13.6 in MAE and RMSE on CARPK

dataset, and 1.9 and 3.0 on PUCPR? dataset, both out-

performing the competitors. Some visualization results on

CARPK and PUCPR? are depicted in Fig. 5. It shows that

the proposed method can achieve remarkable results in the

domain of vehicle counting.

Part_A Part_B UCF_50 UCF-QNRF WorldExpo10 NWPU-Crowd

 GT: 1067.0

 Est: 1088.9

 GT: 513.0

 Est: 500.1

 GT: 966.0

 Est: 991.1

 GT: 1431.0

 Est: 1457.6

 GT: 101.0

 Est: 98.9

 GT: 1270.0

 Est: 1197.1

Fig. 4 Subjective evaluations on the benchmark datasets. The first row, the second row and the third row depict the exemplars, the ground truth

and the estimated results, respectively
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4.5 Ablation study

To further demonstrate the effectiveness of each compo-

nent proposed in the AHNet, two ablation studies are car-

ried out. In the first study, the impact of the core

components (i.e., RA module and FE module) are inves-

tigated on UCF_CC_50 dataset. The details are denoted as

follows.

(i) Baseline: the discriminative feature extractor and

the hierarchical feature aggregator of the first four

layers.

(ii) Baseline ? RA: the baseline model with single RA

module.

(iii) Baseline ? RA ? FA: the baseline model with RA

module and FE module.

The overall quantitative performance is shown in Table 4.

It shows that both the ‘baseline ? RA’ and the ‘baseline ?

RA ? FE’ enhance the baseline, but the latter is better. The

proposed RA module and FE module synergistically assist

the AHNet better than a single RA module. In conse-

quence, crowd counting can be divided into two processes.

For the first process, the RA module takes advantages of

both the horizontal re-calibrate and the vertical re-calibrate

to amplify the input feature map data and suppresses the

background disturbance. For the second process, the FE

module is utilized to localize the crowd area and improving

the accuracy. The final ‘baseline ? RA ? FE’ boosts the

‘baseline’ by 22.0% and 21.9% in terms of average MAE

and RMSE, respectively.

Table 2 Comparative results on the cross-data testing

Methods Source dataset Target dataset MAE RMSE

Part_B Cross-Dataset

MCNN [36] Part_A Part_B 73.7 101.6

CSRNet [15] Part_A Part_B 16.1 27.9

SCAR [8] Part_A Part_B 28.8 42.0

AHNet (ours) Part_A Part_B 13.0 24.4

UCF-QNRF Cross-Dataset

MCNN [36] Part_A UCF-QNRF 340.3 571.9

CSRNet [15] Part_A UCF-QNRF 193.1 375.2

SCAR [8] Part_A UCF-QNRF 262.9 499.8

AHNet (ours) Part_A UCF-QNRF 165.2 334.3

The best results are highlighted in bold

Table 3 Experimental results on the CARPK and PUCPR? datasets

Methods CARPK PUCPR?

MAE RMSE MAE RMSE

FRCN [21] 74.4 82.3 109.2 144.5

IEP [28] 51.8 – 15.17 –

LPN [9] 23.8 36.8 22.8 34.5

SSD [19] 28.2 23.3 32.9 42.1

RetinaNet [16] 16.6 22.3 24.6 33.1

SCRDet [32] 11.1 25.4 9.1 13.5

FCOS [29] 10.7 13.6 16.0 23.8

AHNet (ours) 5.6 7.6 2.7 4.1

The best results are highlighted in bold

GT: 199.0

Est: 201.0

GT: 242.0

Est: 242.0

PUCPR+

GT: 136.0

Est: 138.0

GT: 148.0

Est: 150.0

CARPK

Fig. 5 An illustration of

estimated density maps and

crowd counts generated by the

proposed method. The first row

shows two set samples from

CARPK datasets and PUCPR?

datasets. The second row shows

the corresponding ground truth

maps. The third row shows the

density maps estimated by

AHNet
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In the second study, the extensive ablation experiments

are conducted to verify the effectiveness of the different

level discriminative feature extractor and hierarchical fea-

ture aggregator. The details are denoted as follows.

(i) VGG-16: it indicates the original VGG-16 as a

discriminative feature extractor without hierarchi-

cal feature aggregator.

(ii) VGG-16 ? P1: it includes discriminative feature

extractor and the hierarchical feature aggregator of

the first layer with RA module and FE module.

(iii) VGG-16 ? P2: it includes discriminative feature

extractor and the hierarchical feature aggregator of

the first two layers with RA module and FE

module.

(iv) VGG-16 ? P3: it includes discriminative feature

extractor and the hierarchical feature aggregator of

the first third layers with RA module and FE

module.

(v) VGG-16 ? P4 (w/o): it includes discriminative

feature extractor and the hierarchical feature

aggregator of the first fourth layers without RA

module and FE module.

(vi) VGG-16 ? P4 (AHNet): the completed proposed

method.

(vii) VGG-16 ? P5: it includes discriminative feature

extractor and the hierarchical feature aggregator of

the first fifth layers with RA module and FE

module.

Experimental results of the network with different archi-

tectures are shown in Table 5. Compared with the results of

(i) and (ii), one can see that adding the first layer of hier-

archical feature aggregator to the basic VGG-16 backbone

can reduce the count error significantly. Compared with the

results of (ii), (iii) and (iv), it proves that with the helps of

RA and FE, the performance improves steadily along with

the number of fusion layers. Meanwhile, by analysing the

results of (v) and (vi), one can see that the proposed AHNet

(with the RA module and FE module) produces better

results than the architectures without these two modules.

This demonstrates the effectiveness of the RA module and

FE module. When the hierarchical feature aggregator

combing the five layers [i.e., (vii)], the performance

degrades to some extent. Thus, the architecture of ‘‘VGG16

? P4’’ is chosen as the final AHNet.

The qualitative comparisons of the network with dif-

ferent architectures are shown in Fig. 6. The input ‘ex-

emplar’ image suffers from background interferences and

scale variations. From Fig. 6(i)–(iv), one can see that the

visualized density map gradually changes from coarse-

grained to fine-grained as the number of aggregator layers

increases. In addition, as shown in the green box of

Fig. 6(v) and (vi), the RA module and FE module can

effectively suppress background interferences. By analys-

ing the red box in Fig. 6(v) and (vi), one can see that the

Fig. 6(v) is more close to the ground truth than Fig. 6(vi)

which indicates that the combination of VGG16 and P4

(i.e., the proposed AHNet) outperforms the combination of

VGG16 and P5.

4.6 Failure cases

Although the proposed AHNet demonstrates the superior

performance in dense crowd scenarios, there are some

unsatisfactory results in challenging scenes, as depicted in

Fig. 7. When crowd scenes are acquired in low light, the

estimated density maps are generated with a portion of

unnecessary background interferences. Crowd counting in

low-light environments is a technical challenge because the

head region features are very close to the background

region features in dim light environments. In future work,

Table 4 Effect of adopting the

core components on crowd

counting performance based on

the UCF_CC_50 dataset

Methods Metrics Part 1 Part 2 Part 3 Part 4 Part 5 Avg

Baseline MAE 205.5 256.5 334.2 184.5 285.1 253.1

RMSE 252.8 338.9 467.9 435.2 225.6 344.1

Baseline ? RA MAE 175.7 232.3 297.4 180.9 278.6 232.9

RMSE 232.7 305.0 371.3 227.0 465.5 320.3

Baseline ? RA ? FE MAE 139.5 176.8 273.7 173.3 223.2 197.3

RMSE 193.0 212.4 358.3 210.9 367.9 268.5

The best results are highlighted in bold

Table 5 Ablation analysis of the network with different architectures

Methods MAE RMSE

(i) VGG16 77.5 131.7

(ii) VGG16 ? P1 76.9 122.9

(iii) VGG16 ? P2 75.2 124.4

(iv) VGG16 ? P3 72.9 115.8

(v) VGG16 ? P4 (w/o) 67.6 116.3

(vi) VGG16 ? P4 (AHNet) 67.5 106.0

(vii) VGG16 ? P5 67.7 112.6

The best results are highlighted in bold
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we further investigate reliable crowd feature map extrac-

tion in low-light environments.

5 Conclusion and future work

In this paper, an AHNet is proposed to address the prob-

lems of scale variations and background interferences in

crowd counting and improve the performance of crowd

counting in dense crowd scenarios. The hierarchical multi-

scale features are extracted and integrated via the combi-

nation of the well-designed discriminative feature extractor

and the hierarchical feature aggregator. Meanwhile, an RA

module and an FE module are built and embedded in the

hierarchical feature aggregator to suppress the background

and recognize head regions at various scales. The proposed

network is evaluated on five benchmark crowd datasets and

two cross-domain vehicle crowd datasets. Experimental

results demonstrate that the integration of the RA and FE

modules boosts the baseline by 12.9% and 19.5% in terms

of MAE and RMSE, respectively. Thus, the proposed

AHNet performs favourably against the existing state-of-

the-art methods. In future work, more research is expected

to crowd counting in low-light scenes to improve the

generalization ability in night environment.

Input
GT: 669.0

Ground truth
Est: 752.8

(i) VGG

Est: 656.3

(ii) VGG+P1
Est: 650.1

(iii) VGG+P2
Est: 747.6

(iv) VGG+P3

Est: 704.5

(v) VGG+P4(w/o)
Est: 668.4

(vi) VGG+P4(AHNet) (vii) VGG+P5
Est: 646.8

Fig. 6 Visualization of

estimated results by the network

with different architectures (the

green and red boxes are two

selected areas with background

interferences and scale

variations, respectively) (Color

figure online)

 GT: 538.0

 Est: 478.9

 GT: 539.0

 Est: 635.2

 GT: 1825.0

 Est: 1402.3

 GT: 1663.0

 Est: 1364.6

Fig. 7 The failure cases. The

first row, the second row and the

third row depict the exemplars,

the ground truth and the

estimated results, respectively
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