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Abstract: CT and MRI image fusion is a popular research field that
plays a vital role in clinical diagnosis. To retain more salient features and
complementary information from source images, we propose a dual-branch
generative adversarial network (DBGAN) to fuse the CT and MRI images.
The proposed DBGAN is designed in a dual branching structure schema,
which consists of a couple of generators and discriminators. The generators
and discriminators establish a generative adversarial relationship so that the
fused images generated by the generators are indistinguishable from the
discriminators. Furthermore, we employ the multiscale extraction module
(MEM) and self-attention module (SAM) in the generators to enhance the
salient features and detailed information of the fused images. The subjective
and objective evaluation demonstrate the superiority of the proposed method
over the state-of-the-art methods.
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1 Introduction

Computed tomography (CT) images and magnetic resonance imaging (MRI) images are
two most commonly used medical imaging modes for clinical diagnosis. The CT images
preserve bone structures, and the MRI images can conserve tissue details. CT and MRI
medical image fusion are of great helps in preserving more detailed information, and
it is crucial in diagnosing diseases (Tawfik et al., 2021; Du et al., 2016). Nevertheless,
a solitary medical imaging modality cannot conserve adequate information for medical
diagnosis. As a result, the retention of salient features and complementary information
is crucial in the field of multimodal medical image fusion.

A variety of image fusion algorithms have been proposed in the literature which can
be divided into three classifications, i.e., traditional methods, CNN-based methods, and
GAN-based methods (Li et al., 2013; Li and Wu, 2018; Li et al., 2019). The traditional
methods usually adopt manual-designed strategies, and they are time-consuming due
to the complicated fusion strategies (Li et al., 2013; Kumar, 2015; Li et al., 2018).
In recent years, benefitting from the excellent performance of feature extraction, many
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CNN-based methods have been put forward and have been proved to outperform the
traditional methods (Liu et al., 2017; Li and Wu, 2018; Zhang et al., 2020; Xu et al.,
2020b, 2022). However, it is hard to train a CNN model well in the absence of
labelled samples. To address this problem, the generative adversarial network (GAN)
(Goodfellow et al., 2014) has been broadly employed to generate images with favourable
visual effects without needing the ground truth of fusion image. However, the fusion
results of GAN-based methods are prone to lose valuable details, as they are liable to
overrate one source image while underrating the another (Ma et al., 2020; Fu et al.,
2021).

To fully exploit multimodal information, we propose a dual-branch generative
adversarial network (DBGAN) model to fuse the CT and MRI images. The proposed
DBGAN is designed in a dual branching structure schema, consisting of a couple
of generators and discriminators. The generators extract details to fuse meaningful
information by sharing the same high-level information and utilising the diverse
underlying details. To enhance the salient features and detail information of the fused
images, we employ the multiscale extraction module (MEM) and self-attention module
(SAM) in the generators. The coupled discriminators pull each other on the distribution
of the generated data attained by the generator so that the fused image saves the
most prominent features from both CT and MRI images. Extensive experimental results
verify the superiority of the proposed method over the state-of-the-art methods in both
subjective and objective evaluations.

The remaining paper is described as below. Section 2 introduces the previous work.
Section 3 presents the details of the DBGAN. Section 4 elaborates comparative results
and discussions. Section 5 summarises the paper.

2 Related work

Image fusion is a broad domain that includes a range of algorithms and applications
(Tawfik et al., 2021; Du et al., 2016). According to the different categories, the methods
of image fusion can be roughly divided into three categories, i.e., traditional methods,
CNN-based methods, and GAN-based methods (Li et al., 2019).

The early traditional methods usually utilise spatial domain-based to calculate the
pixels of images. For example, Li et al. (2013) used the average filter to obtain
the two-scales representations, and the details of different source images can be well
conserved for image fusion. Kumar (2015) measured the strength of the horizontal and
vertical details to fuse the source images. However, these methods depend on complex
fusion rules, which may take a long time for decomposition (Li et al., 2019).

In the past few years, the emergence of CNN-based methods have provided a new
branch for multi-modal medical image fusion. For instance, Zhang et al. (2020) proposed
the IFCNN to generate rich fused images by the reconstructed fused features through
convolutional layers. Xu et al. (2020b) presented the FusionDN to preserve the detail
information in the fusion process. Xu et al. (2022) trained the U2Fusion network to
maintain the similarity between the fusion results and source samples. Nevertheless,
the CNN-based methods cannot be adequately trained, because the multimodal medical
image pairs are fewer and the ground-truth can not be clearly defined.
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Recently, more and more multimodal medical images are fused using GAN-based
methods to address the problem of training samples insufficiency. Ma et al. (2019)
designed the FusionGAN to blend the pixel intensity of one source image with the
texture detail of another source image. Ma et al. (2020) adopted a generator and two
discriminators to build an adversarial game, which can adequately train and avoid
information loss. Xu et al. (2020a) designed the MEF-GAN to boost the performance
of the fused images by combining the attention mechanism. Fu et al. (2021) trained a
fusion network based on GANs and dense-block to improve the fusion effect of two
source images.

3 Proposed method

3.1 Overview

The schematic of the proposed DBGAN is depicted in Figure 1. It is designed in
a dual branching structure schema, consisting of a couple of generators and a pair
of discriminators. The generators aim to generate samples by capturing the data
distribution, and the discriminators devote to estimating the probability in which the
sample images come from the training data rather than generators. Eventually, the
generators generate samples which the discriminators are unable to distinguish.

Figure 1 The framework of DBGAN for CT and MRI image fusion (see online version
for colours)
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3.2 The architecture of generator

The structure of the generator for CT image is shown in Figure 2. It consists of three
convolution blocks, a MEM, a SAM, and two convolution layers.

The three layers in the convolution blocks are convoluted by 5 × 5, 5 × 5,
and 3 × 3, respectively. The large convolution filter can obtain large receptive fields
from the input image pairs, and the small convolution filter can reduce the amount of
computation. These convolution blocks combine with batch-normalisation (BN) layer
and LReLU (Maas et al., 2013) activation function.
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Figure 2 The overall structure of the designed generator (see online version for colours)
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To increase the scale information, we adopt MEM to extract multiscale features. At first,
the MEM squeezes the channels of the feature maps by 1 × 1 convolution layer. After
that, the squeezed feature map is handled by dilated convolution with various dilation
ratios of 1, 2, 3 and 4 to conserve the multiscale features of the source images. The
feature maps are fused by channel-level concatenation operations and 3 × 3 convolution
layer. The final feature map is the same size as the input.

To boost the capabilities of the DBGAN, we employ SAM to increase the attentional
information. Given an input x ∈ RN×C , the proposed method aggregate the attention
information by dmodel-dimensional keys, values and queries. The attention N(x) is
formulated as,

Q = xWQ,K = xWK , V = xWV , (1)

N(x) = γQ√∑h
i=0 ∥Q∥2

γKTV√∑h
i=0 ∥KTV ∥2

, (2)

where Q, K, and V are queries matrices, keys matrices, and values matrices,
respectively. Wi represents the ith parameter metric. γ represents a learnable parameter
and h is channel-dimension. Self-attention enables the model to focus on significant
information from different locations.

Finally, the last two convolutional layers employ 3 × 3 and 1 × 1 with LReLU and
Tanh activation function to generate the fusion image G1.

Likewise, the structure of the generator G2 for MRI image is arranged in the
same scheme as CT generator, but they have different loss functions, which are
detailed in Subsection 3.4. The generator G2 produces the fusion image retaining tissue
information.

The final fusion image G preserves the bone structure information of the CT image
and tissue information of the MRI image. It is formulated as follows,
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G =
1

2
(G1 +G2) . (3)

3.3 The architecture of discriminator

The discriminator is also designed in a two-branches structure, which is depicted in
Figure 3. For the first branch of the discriminator, the discriminator D1 is intended to
be adversarial to the generators. Wherein a discriminator comprises four convolutional
layers and one fully connected layer. The activation function of the convolutional layer
is LRelu. The predicted label is eventually generated. Identically, the prediction label is
ultimately generated by the discriminator D2.

Figure 3 The overall structure of the designed discriminator (see online version for colours)
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3.4 Loss function

3.4.1 Loss function for generator

The first generator loss function LG1 is defined as,

LG1 = Ψ(G1) + λLCon1. (4)

where Ψ(G1) denotes the adversarial loss between G1 and D1. LCon1 represents content
loss, and λ denotes the weight parameter to balance the different loss of the generator.
They are formulated as follows,

Ψ(G1) =
1

N

N∑
n=1

(
D1

(
G

(n)
1 , I

(n)
CT

)
− a

)2

, (5)

LCon1 =
1

wh

(
ρ ∥G1 − ICT ∥22 + ∥G1 − IPf∥22

)
, (6)

where w and h are the width and height of the input image, respectively. ICT

and IPf denote the CT image and pre-fused image, respectively. a and µ are the
hyperparameters.

Likewise, the second generator loss function LG1 is formulated as,



CT and MRI image fusion via dual-branch GAN 7

LG2 = Ψ(G2) + λLCon2. (7)

where Ψ(G2) denotes the adversarial loss between G2 and D2. LCon1 represents content
loss, and λ denotes the weight parameter to balance the different loss of the generator.
Ψ(G2) and LCon2 are formulated as follows,

Ψ(G2) =
1

N

N∑
n=1

(
D1

(
G

(n)
1 , I

(n)
MRI

)
− a

)2

, (8)

LCon2 =
1

wh

(
β ∥∇G2 −∇IMRI∥22 + ∥G2 − IPf∥22

)
, (9)

where ▽ is the gradient operator. w and h are the width and height of the input image,
respectively. IMRI and IPf denote the MRI image and pre-fused image, respectively. a
and µ are the hyperparameters.

3.4.2 Loss function for discriminator

The first discriminator D1 in DBGAN is utilised to discriminate between the CT image
and the source image. The loss function of the first discriminator LG1 is formulated as,

LD1 = E [− logD1(ICT )] + E [− log (1−D1(G1))] . (10)

The second discriminator D2 in DBGAN is used to discriminate between the MRI image
and the source image. The loss function of the second discriminatorLG2 is defined as,

LD2 = E [− logD2(Imri)] + E [− log (1−D2(G2))] . (11)

4 Experimental results and analysis

4.1 Datasets and training details

In the experiments, the CT and MRI images are acquired from the Whole Brain Atlas
database of Harvard Medical School (http://www.med.harvard.edu/aanlib/home.html).
The images are resized to 256 × 256 and delivered in JPG files. In the training
process, 85 pairs of CT and MRI images from the trained database are cropped to size
120 × 120. In this paper, we utilise four typical cases to verify the effectiveness of
the proposed method. Therein, case 1 preserves the information of acute stroke, case 2
reflects the acute stroke in the brain, case 3 is the visualisation of multiple embolic
infarctions, and case 4 employs the fatal stroke in the brain.

The learning rates of the generators and discriminators are initialised as 10−4 and the
Adam is used as the optimiser. The epoch number is 100 and the batch is set to 16. We
utilise the fusion results of IFCNN (Zhang et al., 2020) as pre-fusion images. The code
is based on the Pytorch framework within an Ubuntu server system. The configuration
is equipped with Intel Core i7-9700K CPU @3.60 GHz and NVIDIA GeForce GTX
3090 GPU.
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Figure 4 Subjective results on four typical cases, (a)–(b) illustrates the CT and MRI images
(c)–(k) shows the fused results of the methods (l) is the result of DBGAN
(see online version for colours)
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4.2 Subjective evaluation

To evaluate the intuitive results, we perform the comparison of the proposed method
with nine SOTA methods, including the GFF (Li et al., 2013), CBF (Kumar, 2015),
FusionGAN (Ma et al., 2019), IFCNN (Zhang et al., 2020), DDcGAN (Ma et al., 2020),
FusionDN (Xu et al., 2020b), MEF-GAN (Xu et al., 2020a), PerceptualFusion (Fu et al.,
2021), and U2Fusion (Xu et al., 2022). The subjective results are depicted in Figure 4.

For case 1, the CT image highlights bone information and the MRI image reflects
soft tissue information. One can see that the GFF (Li et al., 2013) and CBF (Kumar,
2015) methods performs well in retaining details, but poorly in retaining essential
information. The contrast of IFCNN (Zhang et al., 2020), MEF-GAN (Xu et al.,
2020a) and U2Fusion (Xu et al., 2022) is lower in visualisation. The fusion images of
FusionGAN (Ma et al., 2019) and DDcGAN (Ma et al., 2020) are not high, and they
are indistinct. By comparison, FusionDN (Xu et al., 2020b), PerceptualFusion (Fu et al.,
2021), and the proposed DBGAN can maintain the bone structures of CT image as well
as retain soft tissues of MRI image in red box. For case 2, the fused images of the
methods [e.g., GFF (Li et al., 2013), CBF (Kumar, 2015), IFCNN (Zhang et al., 2020),
MEF-GAN (Xu et al., 2020a), U2Fusion (Xu et al., 2022) and DBGAN] maintain clear
details and the methods [e.g., DDcGAN (Ma et al., 2020), FusionDN (Xu et al., 2020b),
PerceptualFusion (Fu et al., 2021) and DBGAN] preserve appropriate brightness. For
case 3, GFF (Li et al., 2013), CBF (Kumar, 2015), FusionGAN (Ma et al., 2019),
IFCNN (Zhang et al., 2020) and U2Fusion (Xu et al., 2022) are incapable of preserving
supplementary information of all regions. By comparison, DDcGAN (Ma et al., 2020),
FusionDN (Xu et al., 2020b), and DBGAN can conserve the bone and tissue information
of source images, as shown in red box. For case 4, CBF (Kumar, 2015), CBF (Kumar,
2015), DDcGAN (Ma et al., 2020), FusionDN (Xu et al., 2020b), U2Fusion (Xu et al.,
2022) and DBGAN preserve more illumination information and texture preservation.
Overall, the DBGAN is competitive with other competitors in terms of subjective maps.

4.3 Objective evaluation

Four evaluation metrics [structural similarity index measure (SSIM) (Wang et al., 2004),
peak signal-to-noise ratio (PSNR) (Wang and Li, 2010), mutual information (MI) (Qu
et al., 2002) and visual information fidelity (VIF) (Han et al., 2013)] are adopted for
objective comparison. The objective results are illustrated in Table 1. For each of these
four metrics, the higher value indicates a better performance.

For case 1, the proposed DBGAN scores 0.6669, 18.7174, 17.4492 and 0.6669 in
SSIM, PSNR, MI and VIF, respectively, all ranking the best place compared with other
SOTA methods. Specifically, compared with DDcGAN (Ma et al., 2020) which adopts
the GAN-based methods, the proposed DBGAN improves the SSIM by 134.4%, PSNR
by 18.1%, MI by 17.5%, and VIF by 142.4%, respectively. Likewise, the DBGAN
outperforms the other competitors in case 2. Especially, it improves the SSIM, PSNR,
MI and VIF by 13.2%, 60.6%, 7.7%, and 41.6% compared with MEF-GAN (Xu et al.,
2020a), which also adopts attention module. For cases 3 and 4, the proposed method
ranks the first place in four evaluation indicators.
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Table 1 Objective evaluation of the proposed method and the competitors in terms of SSIM,
PSNR, MI and VIF
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5 Conclusions

In this paper, we propose a DBGAN for CT and MRI image fusion. A pair of generators
generate real-like fused images to fool a pair of discriminators, while the discriminators
are designed to discriminate between structural differences between the fused image
and the source image. In addition, the MEM and SAM are designed in generators
to enhance the salient features and detail information of the fused images. Subjective
evaluation results indicate that DBGAN can retain the bone structures of CT image
and soft tissues of MRI image. Meanwhile, objective results prove that it outperforms
other state-of-the-art methods in terms of SSIM, PSNR, MI and VIF compared with the
state-of-the-art methods.
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